Zeitschrift: L'Enseignement Mathématique
Herausgeber: Commission Internationale de I'Enseignement Mathématique

Band: 34 (1988)

Heft: 1-2: L'ENSEIGNEMENT MATHEMATIQUE

Artikel: ABOUT THE PROOFS OF CALABI'S CONJECTURES ON COMPACT
KAHLER MANIFOLDS

Autor: Delanoé&, Ph. / Hirschowitz, A.

DOl: https://doi.org/10.5169/seals-56591

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 08.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-56591
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

L’Enseignement Mathématique, t. 34 (1988), p. 107—122“

ABOUT THE PROOFS OF CALABI'S CONJECTURES
ON COMPACT KAHLER MANIFOLDS

by Ph. DELANOE and A. HIRSCHOWITZ

ABSTRACT

The main part in the proof of Calabi’s conjectures consists in a priori
estimates of order zero, two, three. We explain how a reduction to these
estimates may be performed in the framework of C* functions and how
higher order estimates may be derived without Schauder’s elliptic theory.
The main tool is an “elliptic” inverse function theorem [22] [11].

0. INTRODUCTION

T. Aubin [1, 2, 3] and S. T. Yau [23, 24] have brought positive answers
to the so-called Calabi’s conjectures [6], namely,

THEOREM 0.1. (Aubin, Yau). On a compact (connected) Kdihler manifold
with negative first Chern class, there exists a unique Kdhler-Einstein metric ¢
satisfying: Ricci(g) = —¢'.

THEOREM 0.2. (Yau). On any compact (connected) Kdhler manifold, given
a cohomology class c¢e H*X,R) which contains a Kdhler form, every
2-form in the first Chern class is the Ricci form of some Kdhler form of c.

Mathematicians from several fields are concerned with these results,
whose main consequences are listed in [23] and in [5] sections 2 and 3.
Unfortunately, the proofs are quite technical, they involve rather “irregular”
mathematical objects such as elliptic equations with non smooth coefficients,
and they make a decisive use of Schauder theory. The aim of the present
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note is to analyze how far these tools are necessary for the proof. It turns
out that it is possible to reduce the contribution of elliptic theory mainly
to a suitable local inverse function theorem for nonlinear elliptic operators
acting on smooth functions [22] [11].

The proof presented below deals only with the reduction to the crucial
estimates of order zero, two and three, already obtained by Aubin and Yau.
Although it is not so clear in [21] [24] these estimates were performed
essentially through coordinate free tensor calculus. We show how higher order
estimates may be obtained in the same way.

The whole approach applies as well to the corresponding real elliptic
Monge-Ampere equation on compact Riemannian manifolds [9] and to
various generalizations of it. We shall freely use arguments of Calabi [6, 7, &],
Aubin [1, 2, 3], Yau [23, 24], Bourguignon et al. [5] [21].

ACKNOWLEDGEMENTS. The second author thanks Otto Forster for
drawing him into the subject and Frangois Rouviere for stimulating conversa-
tions. Both authors thank Jean-Pierre Bourguignon who originally suggested
that they get in contact together.

1. THE MONGE-AMPERE EQUATION

Let X be a compact connected finite-dimensional Kaihler manifold.
® denotes the original C* Kahler form, g the corresponding Kahler metric,
¢ € C*(X) denotes a C* real-valued function on X, and we set

o =o+ . /—100¢

where @ and @ are the usual first order differential operators. Let ¢’
denotes the Kdahler metric corresponding to o'. In the sequel, “smooth”
means C*.

If g and ¢’ are viewed as morphisms from the antiholomofphic tangent
bundle into the holomorphic cotangent bundle T*, then (g'g~ ') is an endo-
morphism of T* the determinant of which, det (g'g~!) is a smooth function
on X. The function ¢ is said to be admissible if and only if det(g'g~?) is
strictly positive on X. One proves easily that if ¢ is admissible, then g’
is again a (positive definite Kéhler) metric e.g. [2], p. 119.

Let 2 [0, +o0). It is convenient to denote by A, the subset of C%(X)
consisting in all admissible real-valued smooth functions ¢ on X, satisfying,
~in case A = O the further zero average condition

)j((deg =0,
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where dX, denotes the volume form associated with g. When A > 0, 4, is an
open subset of C*(X): indeed, the natural injection C*(X) C?(X) is con-
tinuous, with respect to the Fréchet and Banach topologies; A, is the pull
back, by this injection of the open set

{peC¥X), det(gg™ ") > 0}
Definition 1.1. Let X be a smooth compact manifold, V' a smooth vector
bundle on X, C®(X, V) the Fréchet space of smooth sections of V. A

LCFC submanifold of C®(X, V), is a locally closed finite codimensional
Fréchet submanifold of C*(X, V).

The set A, is an open subset of the LCFC submanifold
{peC*X), )j((deg = 0}.
We define the map P,, from A, to C*(X), by

Py(@) = Ao — Logdet(g'g™1).

The proofs of theorems 0.1 and 0.2 have been reduced to the solution,
when A > 0, of the following complex Monge-Ampére equation (e.g. [21],
(lecture n° V), [4] p. 143):

(1) Pio) = f,

where f € C®(X) is given, and in case A vanishes, has to satisfy the natural
constraint (e.g. [1] p. 403, [24] p. 361, [21] p. 85),

Jelax, = [ dx,.

In any case, f ranges in a connected LCFC submanifold B, of C*(X).
To see that B, is connected, notice that 0 € B, and that given any f € B,,
the following path connects f to 0 in By:

te[0,1]1 - f; =:tf + Log(j e"dX,) — Log([dX,).

The derivative of the map P, at ¢ € 4,, is given by
(2) dP\(9, 59) = (A"+ 1) 3¢

where A’ stands for the Laplace operator on functions in the metric ¢’
[21] p. 96. Classically, it follows from the Maximum Principle [20], the
Fredholm Alternative theorem and from the elliptic regularity theory, that
“Py(@, ) is invertible Yo € A, , either from C®(X) to itself when A > 0, or
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from {ue C*(X), fudX,=0} to {ve C*(X), [vdX,=0} (dX, denotes the
volume form in the metric g’) when A = O.

For completeness, let us indicate how, for instance theorem 0.2, can be
reduced to equation (1) with A = 0. It is quite straightforward. First of all
we are given a cohomology class ¢ € H*(X, R) such that there exists a Kéhler
form ® in ¢; let p be the Ricci form of ®: pe C,(X), the first Chern
class of X.

Then we are given ye C(X) and hence f e C®(X) a real function
(defined up to an additive constant), which measures the deviation for ®
from satisfying 0.2:

Yy—p=.—100f.
Now we look for another Kéahler form ' €c¢, 1.e. we look for a smooth
real function ¢ (also defined up to an additive constant), where

o —o=./—13d0¢

such that the Ricci form p’ of o' coincides with .
In other words, we want ¢ to satisfy

p—p=./—100f,

or equivalently, if g and g are the Kahler metrics respectively associated
with o and o,

00 {— Logdet (g'g™ ")} = dof
which immediately yields equation (1) with A = O:

— Logdet(gg™") = f,

since anyway f is only defined up to an additive constant.

As ® and ®' are cohomologous and closed, so are the corresponding
volume forms, therefore X has same volume measured with the metrics g
and ¢'; this defines completely f, subject to the natural constraint mentioned
above.

2. A ToroLOGICAL LEMMA

In our setting, the continuity method becomes a “surjectivity method”
since it is based on the following
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LemMMa 2.1. Let A, B be metric spaces, with A# @ and B
connected. Let P: A — B be a continuous map. Assume:

(i) P is open,
(i) P is proper, that is, for any compact subset K in B,P YK) is

compact. Then P is surjective.

Proof. We only need to prove that P(4) is closed. Let b be a point

in P(4). Since B is a metric space, there exists a sequence (b;),_, in P(A)
converging to b,. The subset K = {b,y, b, b,, ..} is compact, hence so is
PP~ Y(K). The latter contains by, .., b;, .., hence by, and it is obviously
contained in P(A4). Q.E.D.

In order to make use of this lemma, we shall need some inverse
function theorem for (i), and some a priori estimates for (ii).

3. LOCAL INVERSION

THEOREM 3.1. Let X be a smooth compact manifold, V and W
smooth vector bundles on X, U an open set in C®X,V), and
P:U - C*(X, W), a smooth nonlinear elliptic partial differential operator.
Let A and B be LCFC submanifolds of U andof C®(X, W) respectively,
such that the restriction P, of P to A, sends A into B. Then
the Jacobian criterion holds for P,, namely, if the derivative of P,: A — B
is invertible at @o€ A, then P, is a local diffeomorphism near @,.

This is a convenient variant of the Nash-Moser theorem (e.g. [14])
regarding suitable restrictions of elliptic operators. It is established in a

separate paper [11] (see also [22]). It relies only on the classical (Banach)
inverse function theorem combined with elliptic regularity.

Remark 3.2. The Nash-Moser theorem has been studied by many authors,
see the bibliography below and further references in [14] [15] [25].

4. PROPERNESS

In view of (2), theorem 3.1 implies that P, is open. We want to apply
lemma 2.1 in order to prove that P, is surjective from A, to B,. Since
Pi(4;) # @ (it contains 0), and since B, is connected, this amounts to

proving that P, is proper. Let us explain why a priori estimates imply
properness.

Concerning subsets in 4, we have
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ProrosiTiON 4.1. A subset S in A, is relatively compact in A,
iff its closure S in C®(X) lies inside A, and S is bounded in C*(X).

This readily follows from Ascoli theorem which implies the well-known
fact [12] (p. 231) that in C®(X) (and in any closed LCFC submanifold
of C*(X), such as B,, as well) bounded subsets are relatively compact and
vice-versa; hence, compact subset of A, are nothing but bounded closed
strictly interior subsets of A4, . Explicitely, let us state the

COROLLARY 4.2. A closed subset S in A, is compact if and only if
there exists a sequence (C;),ie€ N, of positive numbers, such that for any ©
in S the following estimates hold :

H(@) " =:supl(g) '] < Co,
X
VieN, [D'¢| =:sup|D'o|<C,,
X
where |+| denotes some natural norms of tensors in the original metric g,

and D =:(V,V) s the total covariant differentiation with respect to the
metric g.

Proof. Indeed S is closed and bounded. Moreover, since for ¢ €S,
1) "Il < Co

all the eigenvalues of (g')”* (which are positive) are uniformly bounded from
above, hence those of ¢’ are uniformly bounded from below, in other words:

Je >0, VYoeS, ¢g =g,

or equivalently S lies strictly inside A,. Q.E.D.

In the next sections we will show that if f belongs to some compact
(i.e. bounded and closed) subset K of B,, defined by a sequence (K;),
ie N, such that | D'f | < K;, then for ¢ € A, satisfying P,(¢) = f, the
following a priori estimates hold:

ol < Co, VieN, [ DVVo| < Ci,y.
These estimates imply that P, is proper, ie. that S = P, (K) is compact,

according to the following

PROPOSITION 4.3. Let S be a closed subset in A,. Suppose that there
exists a sequence (C;),i€ N, such that for any ¢ in S, the following
estimates hold :
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@l <Co» Pl <Co, VieN, [DVVQ| < Cissy.
Then S is compact.
Proof. The first two estimates imply a uniform estimate
| Logdet(g'g™ ") | < E.
The estimate on || VVe || yields another one:
gl <F.
These two estimates yield

@) I <G.

Now from || D'VVo | < C,., we infer

~

1 DiA(P | < Cipy

since D and g~' commute (A denotes the Laplacian in the metric g).

As A performs a continuous linear automorphism of the Fréchet space of
smooth functions with zero average (by Fredholm theory), the Closed Graph
Theorem implies the missing estimates. Q.E.D.

Remark 4.4. Actually we have been considering two gradings of C*(X)
[14]. The usual one, namely the one defined, Yu € C*(X), by

lullo=suplul,
X
lulli=1llwl,_, +1Dul, i>1,

and another one, well-adapted here since the true unknown is a Kihler
metric, defined by

fulls =1lulo, Nullf=1ul,,

lul#F = llullfy+ I D72VVW) ||, i>2.

Although it is unnecessary for the purpose of proposition 4.3, it can be
shown globally (without Schauder theory) that these two gradings are tamely

equivalent [14] of degree 2 and base 0 [10] (section 5). Hence, they
define the same topology.
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5. A PRIORI ESTIMATES: THE ORIGINAL WAY

According to proposition 4.3 we must prove now that, given any
sequence of positive real numbers (K;),i e N, there exists a sequence (C;)
such that

VieN, | DiPx((P) | <K,
implies
loll <Co, VieN, | DVVo| < Ciy.

These are a priori estimates of order zero, two, three, and so on ...
In case A > 0, the C° estimate is straightforward [2]. In case A = 0, it
becomes very tricky; proofs simpler than Yau’s original one [24] (p. 352-359),
based on the idea of uniformly estimating the LP(dX ) norms of ¢, may be
found in [16] (dimension 2), [3] [21] and [4] (p. 148-149).

Estimates of order two and three are carried out by means of tensor
calculus and of the Maximum Principle (for elliptic equations) [20] applied
to suitable test functions. Though it is not everywhere clear in [21] [24],
it 1s worth noting that the computations can be written intrinsically, i.e.
without any reference to a particular system of coordinates (e.g. [2]), or even
coordinate free (see section 6 below).

Further regularity 1s then recovered by Schauder theory e.g. [5]
(lemma 1). In the sequel, we show how further estimates can be carried out
instead, just going ahead with coordinate free tensor calculus. This occurs
actually for any fully nonlinear second order elliptic equation on a compact
Riemannian manifold, via a straightforward imitation of the device below.

Remark 5.1. 1t follows from the C? a priori estimates that the metrics ¢’
are a priori uniformly equivalent to the original metric g (see e.g. [3],
p. 75).

6. COORDINATE FREE TENSOR CALCULUS

Even coordinate free tensor calculus needs indices. Usually these indices
refer to a local frame. Another way is to view these indices globally as
labelling copies of the holomorphic and antiholomorphic tangent and
cotangent bundles. From this point of view, a tensor written with indices
is a section of the tensor product of a family of bundles indexed by an
unordered set of indices (disregarding those indices subject to the summation
convention).

el
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We extend the summation convention as follows: we will be concerned
only with lower indices. If a letter occurs twice, it refers to a contraction,
which is taken with respect to g or to g’ according to whether the letter
occurs with a bar or with a prime. So,

T ... stands for g¢®T , 5., while

T...a...a’... Stands fOI' g/ aET a..b...

As usual if T, ; is a tensor, further lower indices refer to covariant
differentiation (with respect to g); so,
T, msStands for V,, T, ,, while

T, ., stands for V_7,;1Ta___,

Our indices will be latin letters; greek letters will denote multi-indices.
If o is a multi-index, o will denote the conjugate multi-index (for instance
if & = abc, then o = abc), while | o | denotes its length. We shall say that o

is mixed if 1ts length is at least two and, among the first two letters,
exactly one has a bar.

The notations D, V, V, | ||, were introduced in section 4.

Remark 6.1. Since covariant differentiation (with respect to g) and con-

traction with respect to g’ do not commute, we observe that, for instance,
the difference (recall g'=g+ VVo)

(3) Pag’ap — ((paa’cz)b = Quea Paren

does not vanish.

7. HIGHER ORDER A PRIORI ESTIMATES: GENERALITIES

We want to prove by induction,
ProrosiTiION 7.1. Given n > 4, a sequence (K;),ieN, and a finite
sequence C,, ..., C,_, there exists C, such that:

loll <Co, Vi=0,.,n—3, |DVVe| < Ci,,
and Yie N, | D'Pyo)| < K;,

implies

I D" 2VVo || < C,.
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Actually one needs | D'P,(¢)| < K; only for 0<i<n, hence C,
depends only upon (C,, ..., C,_{, Kq, .., K,).

Hereafter, by “a constant”, we will mean a constant which depends only
upon the given constants (Cy, ..., C,_1, Kg, .., K,)-
et us explain a further convention.

Convention 7.2. We will have to consider sums of tensors obtained via
contractions of tensor polynomials in the variables (g')~ %, VVaq, ..., D'VVao, ... .
The present convention helps describing the variables occuring in (still)
uncontrolled expressions.

First of all, given @ € A, and an integer n > 3, we denote by E,_,
the (finite dimensional complex) vector space generated by all contracted
tensor polynomials, with degree of homogeneity at most 2n, in the variables

(g)"', VVo, DVVe,.,D" 3Ve, DP(¢), i=0 .,n.

In order to prove 7.1, we will compute modulo E, _; .

Given integers p, .., s, all of them > n, we will say that mod. E,_; a
tensor T is “of the form T, /°, whenever mod. E,_; it is a sum of
contractions of tensors

AQDP Vo ® .. ® D" 2VVeg,

where the A’s are in E,_ .

Furthermore for s > n, under the assumptions of 7.1, we will say that
a scalar term T, i1s coercive, if for any other term of the form T
(resp. T ;) there exists a constant C such that:

1

| T.| < C(T,,)? (resp. | Ti,| < CT,,).

We present now three lemmas which illustrate the previous convention.

LEMMA 7.3. Given integers s >=n = 3, the covariant derivative (in
metric g) of a term of the form T, mod.E,_,, is of the form
(Tyr 1+ T5)mod. E,.

Proof. This is just because the derivative D[(g’)” '] is a contracted tensor
polynomial (of degree 3) in (¢')~! and DVVe.

LemmA 7.4. If o and B are two distinct mixed multi-indices of length
(n+2) obtained from each other by permutation, then the difference of
covariant derivatives (@,— @g) is of the form T,mod. E,_,.

I
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Proof. On the Kihler manifold (X,g), commuting two consecutive
covariant derivatives yields curvature terms only if the couple of derivatives
concerned is mixed (for general commutation rules on Riemannian manifolds
see e.g. [21], exposé XI, proposition 3.2). If so, say k and | are the
permuted indices, the result will involve

R%5  (curvature tensor of g)

with p and ¢ of the same type. Explicitely:
Oty — Patkp = Z Rk Pyge
p

for all p,v, 1, such that vpt = Au. Hence the types of all the remaining
non-permuted covariant derivatives ¢, are identically preserved. In particular
if vy and & denote two multi-indices of length n obtained from each other
by permutation, necessarily

(@3, — @i35) is of the form T, mod. E,_, ,

since two mixed derivatives will keep bearing in first place on ¢ in the
process of permutation.

- The proof of lemma 7.4 is therefore reduced to the following two cases
for the multi-indices o and J:

cither o = ijkh, B = kjih, |A| =n—1,
or o = ijklp, B = kliju, lp]l=n—2.
In the first case, one has identically on a Kahler manifold :
¢, — @3 = 0.

In the second case, the same reasoning as above holds for (Py—@g) since
it can be written as

(@7 — Purgip) + (Puiti— Pudiz)
cach of these two commutations being clearly of the form T,mod. E,_,.

Q.E.D.

Remark 7.5. The fact that commutation formulae involve only mixed

derivatives was already a crucial detail in the proofs of the second and
third order a priori estimates.

LEMMA 7.6. The tensor ©.,, where o is a mixed multi-index of length
nois, mod. E,_,, of the form:
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T35+ T, when n = 2,
T4s3+ Tz333:+ T3 when n =3,
Ts+Ty44+ Ty when n = 4,
T,.1+ T, when n > 5.

Proof. The casesn = 2, 3, 4, 5, must be checked bare-handed. There is no
difficulty. Then, for n > 5, one can proceed by induction on n. Indeed assume,

Qaga = Tnwyy + T,mod. E, ;, forsomen = |a|>5.

Recall formula (3) and lemma 7.3; differentiating once the above equality
yields

Paaapr = (.Tn+l+ Tn)b T Quca Parey = Tn+2 + T,,+1 mod. En 5
since | aca | = n + 2. The same is true with b instead of b. Q.E.D.

Remark 7.7. The preceding lemma offers a perspective which brings some
light on the type of difficulties to be expected for carrying out a priori
estimates of each order. In particular, one may anticipate that a special
step should be required for n = 4 (in order to kill the effect of the term
T, 4) ana that the same (simpler) procedure should then apply, arguing by
iteration, for any n > 5.

Notice also that the hardest case appears to be n = 3. Indeed, following
Calabi [8] one must guess the very special coercive functional [1] [24]
S3,3 = Oupc Parper »

perform a careful calculation of A'(S; ;) and use either the Maximum
Principle [24] or a recurrence on LF(dX, ) norms of S5 3 [1]. The approxi-
mate tensor calculus which we may conveniently use hereafter would not be

effective for the case n = 3.

8. A PRIORI ESTIMATES OF ORDER FOUR

¢

In order to prove 7.1 with n = 4, we consider the functional:
S4,4 = Papea Pavea T Pabea Pabed -

It is enough to estimate S, , since it is coercive. Let us compute
—A'(S,, 4). One readily obtains:

~A(S4,4) = Tes + Ts,s (mod. Ej),
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where T's s is coercive, while the sixth order derivatives in T4 4 occur
through @5, With [a| = 2.

In view of 7.4 and 7.6, after bringing the indices cc’ in first position,
we get

(4) —A(S44) = Ts s+ Tsa+ Tyuat Tas+ Ty (mod Ej)

where T'5 5 is the coercive term from above.
As expected in remark 7.7, in order to control the term T, , ,, we need to
consider instead of S, 4, another functional, namely :

6 = S4'-, 4 €Xp (8 Pabe (pZzbE) s

where € i1s a constant to be chosen later on. Then we compute the
quantity

Q = - (A,e) cXp (_—S(Pal_yc (pfzbE) 5

and we easily find
Q= — A4 0 +eTss44+8Ty444+¢€Ts 4, (mod Ej),
where T 4 4 4 is a square and where
Taa,4.4 = Sa,4(Pupea Parear + Pupear ¢&b5d)-
So there exists a constant ¢, such that (see remark 5.1),

(54,4)2 <1 Ty a4,4.

Furthermore we may choose constants ¢; such that,

L 1
| Ts,a,4l < ¢,y Sy, 4(T5,5)2 s 1 Ts 4| < c3(T's, s Sy, ),
A 1
| Tyaal< C4(S4,4)2 o [ Tyl < €s84,4, |Tyf < C6(S4,4)2 .

By splitting T 5 in its two halves and by putting each half together with
Ts 4 4 and Ty , respectively, one obtains:

ot 1

1 3 1 3
Q= (E 5 g C%) (S4,4)% — a(S4,4)* — <C§ + 5 C%) Sa,a — ¢6(S4,4)” .

Now & must be chosen small enough in order for the coefficient of (S4 4)?
lo be strictly positive: ¢ e (0, (2/c, c?)). |

To complete the proof, one argues that Q(zo) < 0 at a point z,e X
where 0 assumes its maximum on X, which implies
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S4,4(Zo) < ¢y,

for some controlled constant ¢,, and anywhere else on X, since 0 < 6(z,)
and | DVVo || < C;, one infers that:

S4,.4 < cqexp (2eCy).

9. A PRIORI ESTIMATES OF ORDER FIVE AND MORE

Here, in order to prove 7.1 with n > 5, we consider the functional:

1

Sn,n - 5 2 Pabe Pava

le]=n—2

.1 .
(the coefficient 5 appears for both definitions of S, 4 to agree).

Again S, , 1S coercive and we compute in a similar way,
*A’(Sn,n) = Tn+2,n + Tn+1,n+1 (mOd En—l)a

where T, .+ 15 coercive. As for T,,, ,, proceeding as in the previous
section, we find:

Tn+2,n = Tn+1,n + Tn,n = Tn (mOd En—l)'
Hence,
~~A,(Sn,n) = Tn+1,n+1 + Tn+1,n + Tn,n + Tn (I’IlOd En—l)a

with T, .+, coercive. Changing n into (n—1), for n > 6, yields still
modulo E, _ 4

_A/(Sn—l,n—l) = Til,n + T;! (mOd En—l)'
In view of formula (4) of the preceding section, this holds for n = 5 as
well. From the coercivity of T, , we may choose constants ¢; > 0, such that
1

—Al(Sn—l,n—l) = Cq Sn,n —— CZ(Sn,n)—z_ — C3-

Moreover we may choose constants c¢; such that

1 1
| Tn+1,nl < 264(Tn+1,n+1 Sn,n)2 s I Tn,nl < Cs Sn,n > | Tnl < CG(Sn,n)2 5

and c;c; > ci + cs.
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We obtain,
1

—Al(Sn,n+C7Sn—1,n~1) = (5107—Ci"05)5n,n — (ce+cacy) (Sn,n)z — C3Cq

and the proof may be easily completed.

10. THE ANALYTIC POINT OF VIEW

Since equation (1) is elliptic and g, as a Kédhler metric, is real analytic
for the underlying real (analytic) structure of X, by the general elliptic
regularity theory e.g. [17], p. 266-277 if P,(¢) is real analytic so are ¢
and ¢'. Hence a purely analytic proof would be desirable.

Real analytic inverse function theorems are available since the work of
J. Nash [19] who made a decisive use of smoothing operators (see also [13]).
A theorem of H. Jaccbowitz [15] (p. 203) (see also [25], p. 94-101, 137-138)
is available, the proof of which is purely analytical and does not use
smoothing operators. This approach was first initiated by A. Kolmogorov
(1954) and developed by V. Arnold (1961) (see references in [18]), and by
J. Moser [18] (p. 513-533). Unfortunately, the application to nonlinear elliptic
operators is not achieved.

A further trouble arises from the fact that the space of analytic functions
is not metrizable.
Last but not least, we could not carry out analytic a priori estimates.
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