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t + 0 £ xj • 2 j (xj 0 pour j grand)
i

(7)
00

t - 0 * £ Xj • 2-i (Xj 1 pour j grand),
î

les expressions F(t), F(t + 0), F'(t-0) données par (5) sont les dérivées

dyadiques (resp. droite, resp. gauche). Notre problème, un peu plus général

que celui de Denjoy, consiste à calculer une fonction F à partir de ses

dérivées dyadiques, supposées exister en tout point.
Restreignons F à l'ensemble des nombres dyadiques (les autres

n'interviennent pas dans la définition des dérivées dyadiques) et observons que si F
a ses dérivées dyadiques partout > 0, F est strictement croissante. C'est

un analogue du théorème de Rolle qui s'établit aisément par dichotomie:
s'il existait une corde dyadique à pente ^ 0, il existerait une suite de telles

cordes au-dessus d'intervalles dyadiques emboîtés décroissants, donc une
dérivée dyadique ^ 0. La première conséquence est le théorème d'unicité:
si / 0, F est une constante, donc fn 0. Voici une seconde conséquence.

Lemme. Si a ^ ^ ß, on a a ^ /„ ^ ß pour tout n.

^ F(t) - F(s) ^ QPreuve, a^^ ß.
t - s

La solution: totalisation dyadique

Revenons à X. C'est un espace probabilisé, avec la probabilité naturelle
(à savoir l'image réciproque de la mesure de Lebesgue sur [0, 1] par
l'application x -> t vue en (6)). C'est aussi un espace topologique, engendré
par les ouverts-fermés

C(£!, s2,... s„) {x:*! e1,x2 s2,...,xn £„}

que nous appelons cellules d'ordre n(neN), et il a la propriété de Baire:
si X est la limite d'une suite croissante de fermés, ces fermés, à partir
d'un certain rang, contiennent une cellule. Comme les /„ sont des fonctions
continues, les ensembles

Em{x:sup | f-| < 1}
n^m, p^m

sont des fermés. Comme les /„ convergent en tout point, la réunion des
Em est X. D'après la propriété de Baire, les à partir d'un certain rang,
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contiennent une cellule. En conclusion, il existe des cellules sur lesquelles
la fonction / est bornée. Soit C une telle cellule, d'ordre minimum.

Si C X, le lemme montre que les fn sont bornées. Le théorème de

Lebesgue s'applique et donne

(dx représente l'élément de mesure de probabilité, et Jix la moyenne sur
X). Le problème est alors résolu. La totalisation s'arrête à la première
étape.

En général, la martingale /„, restreinte à C et à des valeurs de n assez

grandes (supérieures à l'ordre de C) définit une nouvelle martingale dyadique,
dont la valeur moyenne est

(Jic représentant la moyenne sur C et n(C) l'ordre de C), parce que les

fn sont bornées sur C et convergent vers /. Formellement, la martingale
dyadique fn restreinte à C C(sx, s2,... sk) est la martingale

9m(yi ,y2. - ym),s2,-
et la moyenne sur C est l'intégrale par rapport à dy.

Si C / X, on répète l'argument ci-dessus en remplaçant X par X\C.
On obtient une nouvelle cellule d'ordre minimum, C2, disjointe de C, sur
laquelle la fonction / est bornée. Remarquons que C + C2 ^ X (sinon,
l'ordre de C ne serait pas minimal). On peut donc poursuivre: posant
C1 s C, on définit une suite infinie de cellules disjointes C1, C2,..., Ck...

d'ordres croissants (chacune, à son étape, d'ordre minimum) telles que /
est bornée sur chaque Ck. Posons f° /. Remplaçons / sur C1 par sa

moyenne /(C1), puis sur C2 par sa moyenne /(C2), et ainsi de suite:

on obtient une suite f1, f2,..., fk,... telle qu'on passe de fk~l à fk en

prenant pour nouvelle valeur sur Ck la moyenne /fc_1(Cfc). La /c-ième étape
de la totalisation consiste précisément à déterminer Ck et à calculer fk.
Remarquons que fk est la limite de la martingale fk(n 0, 1,...) obtenue en

arrêtant la martingale /„, sur chaque Cj(j^k), au temps n(Cj).

Posons maintenant

fo fn (x)dx f(x)dx Jix{f)
X X

m Jic{fn)

00

Gra y Ck, lira fk.

L'étape d'ordre od (premier ordinal infini) consiste à déterminer G'" et f".
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Remarquons que G03 est dense dans X, que G03 / X, et que les Ck

sont les cellules maximales contenues dans G03 (il est bon de noter que,

si une cellule admet une partition en cellules, cette partition est finie).

Posons X\Ga. Ainsi /œ / sur K03.

Remarquons aussi que /œ est la limite de la martingale dyadique

fl qui s'obtient en remplaçant fn(x) par f(Ck) quand x e Ck et n ^ n(Ck).

L'étape d'ordre co + 1 consiste à répéter pour /" et K® ce que nous

avons fait au départ pour / et X. On considère les fermés

El {:x : sup |/»-/?(*)!< 1} •

n^ m,m
Suivant Baire, il existe un entier m et une cellule C tels que

0 / C n Xe0 ci ££ n K
La différence C\C n K est une somme infinie de C* (les cellules maximales

contenues dans C n G03), disons

C\C nr= A A(C, K03).
keA

Pour chaque k e A, la cellule mère de Ck (c'est-à-dire d'ordre immédiatement
inférieur et contenant Ck) rencontre iC°; sinon, elle aurait dû être choisie

comme C\j ^ k. Désignons par Dk la cellule sœur de Cfc; remarquons
qu'elle est contenue dans C, donc

0 ^ Dk n K* œ E n K
Choisissons n n(Cfc): alors /" est constant sur Ck (égal à /(Ck)), /®
est constant sur Dk, et /"_1 est constant sur + Dk, égal à la moyenne
des deux valeurs précédentes. Si k g A et k est assez grand, à savoir
n n(Cfc) > m, choisissons x e Dk n Comme xeEJona

1 /?(*) - /"M I < 1

- f*(x)\ ^ 1

et par conséquent

i f(ck) - m 1^3.
Or fa est borné sur C n iC3. Donc /03 est uniformément borné sur les
Ck(keA). En définitive, /03 est borné sur C.

On choisit pour Cû3 + 1
une cellule maximale, intersectant K03, où /œ

est borné, et on considère la moyenne /Û3(CÛ3 + 1). C'est l'étape d'ordre
co + 1.
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Si CM + 1 I, on a terminé. Sinon, on peut poursuivre, et définir une
suite de cellules d'ordres croissants CC0 + 2, Cw + 3, C(ù+k,... (chacune, à son étape,
étant d'ordre minimum) telles que /w est bornée sur chaque Cm + k. On
désigne par f(ù(C(û + k) la valeur moyenne de /m sur C(û + k. L'étape d'ordre
co + k consiste à définir CM+k et à calculer /CÛ(CCÙ + fe). Les cellules
C® + fc(/c*s0, 1,...) sont disjointes, leur réunion G2co est dense dans X et
K2(û X\G2(Û est un compact non vide. En remplaçant /œ par /CÛ(CC0 + fe)

sur chaque C®"1"*, on obtient une nouvelle fonction /2co, qui est encore limite
de martingale dyadique, transformée de la martingale initiale par un dispositif
d'arrêt. C'est l'étape d'ordre 2co.

L'étape d'ordre 2co + 1 considère /2cû et K2(ù. Si f2(ù est bornée sur
K2(û (c'est-à-dire si / est bornée sur iX2cû, puisque / /® f2(ù sur
K2co)} y2œ est bornée sur X et son intégration fournit f0: la totalisation
s'arrête à cette étape. Sinon, on va comme ci-dessus jusqu'à l'étape 3co,

où se trouvent définis un compact K3(û strictement inclus dans K2(ù, et

une fonction /3co, limite de martingale dyadique.
Si /3co est bornée sur K3(ù, elle est bornée partout, son intégration

fournit /0, la totalisation s'arrête à l'étape 3co. Sinon, elle se poursuit
jusqu'à l'étape 4cû, et ainsi de suite.

Si la totalisation ne s'arrête pas avant l'étape co2, les compacts K*0,

K2œ, ^3® _ ont une intersection non vide, X®2, et les fonctions Z®, /2cù, /3tû,...
ont une limite /m2, égale à / sur K®2, constante sur les cellules maximales

contenues dans le complémentaire de K0*2, et limite d'une martingale
transformée par arrêt de la martingale initiale. La totalisation s'arrête à l'étape
co2 si / est bornée sur Kw2, et se poursuit sinon jusqu'à l'étape co2 -h co

au moins.
De façon générale, si a est un ordinal limite avant lequel la totalisation

se poursuit, Ka est la limite décroissante des iXß, ß < a, et /a est égale à /
sur Ka, et limite de la martingale initiale convenablement arrêtée. La
totalisation s'arrête si / est bornée sur Ka, donc fa bornée partout. Elle se

poursuit sinon jusqu'à a + co au moins, par le procédé de construction des

K*+k et faJrk qui se trouve détaillé plus haut lorsque a co.

La chaîne des Ka est strictement décroissante, puisque le passage de

K* à Ka+1 consiste à supprimer une portion dyadique de Ka (intersection
de Ka avec une cellule convenable). Comme il n'y a qu'une infinité dénom-

brable de cellules, la chaîne s'arrête à un ordinal dénombrable, où la
totalisation est achevée.
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