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t+0=>x;-277 (x; = 0 pourj grand)
1

(7)
t—0 = ij-z—f (x; = 1 pour j grand),
1

les expressions F'(t), F'(t+0), F'(t—0) données par (5) sont les dérivees
dyadiques (resp. droite, resp. gauche). Notre probléme, un peu plus général
que celui de Denjoy, consiste a calculer une fonction F a partir de ses
dérivées dyadiques, supposées exister en tout point.

Restreignons F a I’ensemble des nombres dyadiques (les autres n’inter-
viennent pas dans la définition des dérivées dyadiques) et observons que si I
a ses dérivées dyadiques partout > 0, F est strictement croissante. C’est
un analogue du théoréme de Rolle qui s’établit aisement par dichotomie:
s’il existait une corde dyadique a pente < 0, il existerait une suite de telles
cordes au-dessus d’intervalles dyadiques emboités décroissants, donc une
derivée dyadique < 0. La premicre conséquence est le théoréme d’unicité:
si f = 0, F est une constante, donc f, = 0. Voici une seconde conséquence.

LEMME. Si a< f <P, ona a< f, <P pourtout n.

F(t) — F(s
Preuve. ag%ig B.
—§

LA SOLUTION: TOTALISATION DYADIQUE

Revenons a X. Cest un espace probabilisé, avec la probabilité naturelle
(@ savoir I'image réciproque de la mesure de Lebesgue sur [0, 1] par

Papplication x — t vue en (6)). C’est aussi un espace topologique, engendré
par les ouverts-fermés

Cler, €5, 8) = {XiX] = 81,X) = €5, ., X, = &)

que nous appelons cellules d’ordre n(neN), et il a la propriété de Baire:
st X est la limite d’une suite croissante de fermés, ces fermés, a partir

d’'un certain rang, contiennent une cellule. Comme les f, sont des fonctions
continues, les ensembles

E,={x: sup |f,(x)— f,(x)]<1}

nzZm,p=m

sont des fermés. Comme les f, convergent en tout point, la réunion des
E, est X. D’apres la propriété de Baire, les E,,, a partir d’'un certain rang,
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contiennent une cellule. En conclusion, il existe des cellules sur lesquelles
la fonction f est bornée. Soit C une telle cellule, d’ordre minimum.

S1 C = X, le lemme montre que les f, sont bornées. Le théoreme de
Lebesgue s’applique et donne

Jo = J Ja(x)dx = J JX)dx = M« (f)

(dx représente I’élément de mesure de probabilité, et .#, la moyenne sur
X). Le probléme est alors résolu. La totalisation s’arréte a la premiére
étape.

En général, la martingale f,, restreinte @ C et a des valeurs de n assez
grandes (supérieures a 'ordre de C) définit une nouvelle martingale dyadique,
dont la valeur moyenne est

(O = dc(fy) = Mc(f) ("27’(@)

(A - représentant la moyenne sur C et n(C) I'ordre de C), parce que les
f, sont bornées sur C et convergent vers f. Formellement, la martingale
dyadique f, restreinte a C = C(gq, €,, ... § ) est la martingale

gm(y19 y2> ym) = fm+k(819 82? e 8 Vis Y25 - ym) (meNa yEX)

et la moyenne sur C est 'intégrale par rapport a dy.

Si C # X, on répéte argument ci-dessus en remplagant X par X\C.
On obtient une nouvelle cellule d’ordre minimum, C?, disjointe de C, sur
laquelle la fonction f est bornée. Remarquons que C + C? # X (sinon,
I'ordre de C ne serait pas minimal). On peut donc poursuivre: posant
C! = C, on définit une suite infinie de cellules disjointes C!, C?, .., C* ...
d’ordres croissants (chacune, a son étape, d’ordre minimum) telles que f
est bornée sur chaque C* Posons f° = f. Remplagons f sur C! par sa
moyenne f(C?!), puis sur C?> par sa moyenne f(C?), et ainsi de suite:
on obtient une suite f!, £ .., f% .. telle quon passe de f*°' a f* en
prenant pour nouvelle valeur sur C* la moyenne f*~(C". La k-iéme étape
de la totalisation consiste précisément a déterminer C* et a calculer f*.
Remarquons que f* est la limite de la martingale f*(n=0, 1, ...) obtenue en
arrétant la martingale f,, sur chaque C/(j<k), au temps n(C’).

Posons maintenant

Go=YCk, f°=lim f*

1 k— o0

L’étape d’ordre @ (premier ordinal infini) consiste a déterminer G® et f°.
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Remarquons que G est dense dans X, que G® # X, et que les C*
sont les cellules maximales contenues dans G® (il est bon de noter que,
si une cellule admet une partition en cellules, cette partition est finie).
Posons K® = X\G®. Ainsi f® = f sur K“.

Remarquons aussi que f© est la limite de la martingale dyadique
f© qui sobtient en remplagant f,(x) par f(C¥ quand x e C* et n = n(C").

Létape d’ordre @ + 1 consiste a répéter pour f® et K® ce que nous
avons fait au départ pour f et X. On considere les fermés

Ep = {x: sup |fpx)— fRax)]<1}.

nzm,pz2m

Suivant Baire, il existe un entier m et une cellule C tels que
O #CnK®< ESnK”.

La différence C\C n K® est une somme infinie de C* (les cellules maximales
contenues dans C n G®), disons

C\CnK*= > C", A =ACK.
keA
Pour chaque k € A, la cellule mére de C* (C’est-a-dire d’ordre immédiatement
inférieur et contenant C¥) rencontre K®; sinon, elle aurait d( étre choisie
comme C7,j < k. Désignons par D* la cellule sceur de C*; remarquons
quelle est contenue dans C, donc

Q # D*NK® < E©nK®.

Choisissons n = n(C¥): alors f? est constant sur C* (égal a f(C%), f¢
est constant sur D¥, et f©_, est constant sur C*¥ + D* égal a la moyenne
des deux valeurs précédentes. Si ke A et k est assez grand, a savoir
n = n(Cy) > m, choisissons x € D¥ n K®. Comme x € E© on a

| f2(x) = fo <1
| fa-100) — fo(x) | < 1

et par conséquent

| f(C) — o)1 < 3.

Or f© est borné sur C n K°. Donc f° est uniformément borné sur les
CXkeA). En définitive, f© est borné sur C.
On choisit pour C°"' une cellule maximale, intersectant K®, ou f©

est borné, et on considére la moyenne f°(C®*1!). Cest Iétape d’ordre
o+ 1.
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Si C**! = X, on a terminé. Sinon, on peut poursuivre, et définir une
suite de cellules d’ordres croissants C®*2, C®*3, C®** .. (chacune, 4 son étape,
étant d’ordre minimum) telles que f est bornée sur chaque C°** On
désigne par f°(C°*% la valeur moyenne de f® sur C°*k L’étape d’ordre
® + k consiste a définir C°** et a calculer f%C®*%. Les cellules
C°*Mk=0, 1,..) sont disjointes, leur réunion G?**® est dense dans X et
K?* = X\G?® est un compact non vide. En remplacant f® par f°(C®*¥
sur chaque C®** on obtient une nouvelle fonction f2®, qui est encore limite
de martingale dyadique, transformée de la martingale initiale par un dispositif
d’arrét. Cest I’étape d’ordre 2.

L’étape d’ordre 2w + 1 considére f2® et K?®. Si f?® est bornée sur
K?® (c’est-a-dire si f est bornée sur K?°, puisque f = f© = f2® sur
K?®), f2® est bornée sur X et son intégration fournit f,: la totalisation
sarrete a cette €tape. Sinon, on va comme ci-dessus jusqu’a I’étape 3o,
ou se trouvent définis un compact K3® strictement inclus dans K?¢, et
une fonction f>°, limite de martingale dyadique.

Si f3“ est bornée sur K3“ elle est bornée partout, son intégration
fournit f,, la totalisation s’arréte a I’étape 3. Sinon, elle se poursuit
jusqu’a I’étape 4w, et ainsi de suite.

Si la totalisation ne s’arréte pas avant I’étape ®?, les compacts K<,
K?®, K3° .. ont une intersection non vide, K**, et les fonctions f®, £2¢, 3, ...
ont une limite f°°, égale a f sur K®°, constante sur les cellules maximales
contenues dans le complémentaire de K®°, et limite d’une martingale trans-
formée par arrét de la martingale initiale. La totalisation s’arréte a I’étape
®? si f est bornée sur K, et se poursuit sinon jusqu’a l'étape ®? + o
au moins.

De facon générale, si o est un ordinal limite avant lequel la totalisation
se poursuit, K* est la limite décroissante des KP, B < o, et f* est égale & f
sur K* et limite de la martingale initiale convenablement arrétée. La tota-
lisation s’arréte si f est bornée sur K% donc f* bornée partout. Elle se
poursuit sinon jusqu’a o + ® au moins, par le procédé de construction des
K**k et f**F qui se trouve détaillé plus haut lorsque o = o.

La chaine des K* est strictement décroissante, puisque le passage de
K* a K**1 consiste a supprimer une portion dyadique de K* (intersection
de K* avec une cellule convenable). Comme il n’y a qu'une infinit¢ dénom-
brable de cellules, la chaine s’arréte a un ordinal dénombrable, ou la totali-
sation est achevee.
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