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ISOCLINIC n-PLANES IN R?" AND THE HOPF-STEENROD
SPHERE BUNDLES $**° ' > §", n = 2,4,8

by Yung-Chow WoNG and Kam-Ping MoK

0. INTRODUCTION

The construction of the sphere bundles S**' — §", n = 2,4,8, by
N. Steenrod was accomplished in an ingenious but rather roundabout way,
using the famous Hopf maps and the systems of complex numbers, quaternions
and Cayley numbers (cf. Hopf [2], Steenrod [5, pp. 105-110] and Hilton
[1, pp. 51-55]). In this paper, we show how the theory of mutually isoclinic
n-planes in a real Euclidean 2n-space R*" as developed by Wong in [8, 9]
enables us to reconstruct these sp;here bundles in a more natural manner
by working strictly within the field of real numbers and giving the three
cases n = 2,4,8 a more unified treatment. In addition, we prove that
the bundle group O(8) of the Hopf-Steenrod sphere bundle S'°> — S® can
be replaced by SO(8) but not by any subgroup of SO(8).

In §1, we recall certain results on maximal sets of mutually isoclinic
n-planes in R?" that motivated our investigation. In § 2, we confine ourselves
to the cases n = 2,4, 8, and prove some results that will be used later.
In § 3, we construct three sphere bundles by using maximal sets of mutually
isoclinic n-planes in R?". In § 4, we give a unified and explicit formulation
of the three Hopf-Steenrod sphere bundles, using as Steenrod did the Hopf
maps and systems of complex numbers, quaternions and Cayley numbers. In
§ 5, we prove that the Hopf maps and maximal sets of mutually isoclinic
n-planes in R*", n = 2, 4, 8, are equivalent concepts, and that the reformulated
Hopf-Steenrod sphere bundles described in § 4 are topologically essentially
the same as the sphere bundles constructed in § 3. The paper ends with two
appendices in which we explain the operations of Cayley numbers, and give
a direct proof that for n = 2,4, or 8, the n-planes in R*" containing the
Hopf fibers of $**~! are mutually isoclinic n-planes.

In a continuation of this paper being prepared, we shall show that
the image of the Hopf fibers of S*"7! n = 2,4, or 8, under an inversion

. in R*" has some very interesting properties which include those recently
' found by J. B. Wilker [7] for the case n = 2.
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We wish to thank Prof. Wilker for letting us have a preprint of his
paper, and Prof. Kee-Yuen Lam for some helpful discussions.

1. SOME RESULTS ON ISOCLINIC n-PLANES IN R?Z"

By a Euclidean (vector) m-space R™, where m is a positive integer,
we mean an m-dimensional vector space provided with a positive definite
inner product. An r-plane (1<r<m—1) in R™ is an r-dimensional vector
subspace of R™ provided with the induced inner product. In R™, length of
a vector, angle between two vectors, orthogonality between a k-plane and
an r-plane, (orthogonal) projection of a vector on an r-plane, orthonormal
bases and rectangular coordinates are defined in the usual way.

In an R?*", let A, B be any two n-planes. Then we say that A is
isoclinic with B at angle 0 if the angle between every nonzero vector in A
and its projection on B is always equal to 0. It turns out that if A 1is
isoclinic with B at angle 0, then B is isoclinic with A at the same angle 0.
Therefore, in this case, we shall say that A and B are isoclinic at angle 6,
or simply, A and B are isoclinic.

A set ® of n-planes in R?*" is said to be a maximal set of mutually
isoclinic n-planes if every pair of n-planes in ® are isoclinic and ® is not
contained in a larger set of mutually isoclinic n-planes. It is easy to see from
definition that if A is isoclinic with B at angle 6, then its orthogonal

complement At is isoclinic with B at angle 5~ 0. Consequently, if @ is

any maximal set of mutually isoclinic n-planes in R*" and A e ®, then
Ate®.

In his memoir [8] Wong determined, for each n, the dimensions of the
maximal sets of mutually isoclinic n-planes in R?", the number of non-
congruent maximal sets of a given dimension, and explicit equations of the
n-planes in any maximal set of mutually isoclinic n-planes containing a
given n-plane.

In the following, we summarize some of his results related to the problem
studied in this paper.

THEOREM 1.1. (Wong [8, pp. 25-26]). In R?*" provided with a rectangular
coordinate system (x,y) = ([x1 e Xp ]y [Xns 1 o X24]),  any maximal set @
of mutually isoclinic n-planes containing the n-plane O:y = 0 (and con-
sequently, also the n-plane O*:x=0) is congruent to the set of n-planes
with equations
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(1.1) X = 0, or y - X(k0+7\41B1+...+)\4p_1Bp_1),

where (Ao, My, s hy—y) are p real parameters and (By,..B,_1) is a
maximal set of n x n matrices satisfying the Hurwitz matrix equations

(12) Bh + B}; - 0, B’% = —I’ Bth + Bth :0(h,k—_—1, .;h#k).

Here, by (B, .., B,_;) being a maximal set of matrices satisfying equa-
tions (1.2), we mean that (By,.., B,_;) is not a subset of another set
containing more matrices satisfying equations (1.2).

ReEMARK. It is of some historical interest that equations (1.2) first appeared
in the literature in 1923 in connection with the famous problem of
A. Hurwitz [4] on composition of quadratic forms, and then reappeared
in 1961 in a very different type of problem. For more information about
these equations, we refer the reader to Wong’s memoir [8] and J. A. Tyrrell-
J. G. Semple’s book [6].

A maximal set of mutually isoclinic n-planes in R?*" is said to be
p-dimensional (or, of dimension p), if it contains p parameters Ao, Ay, ..., A,
as in Theorem 1.1. It can be proved (cf. [8, p. 54]) that the dimension
of a maximal set of mutually isoclinic n-planes in R*" is always < n,
and that there exist maximal sets of dimension n in R?" if and only if

n = 2,4, or 8. Moreover, we have

THEOREM 1.2. (Wong [8, p. 57]). Let ® be a p-dimensional maximal
set of mutually isoclinic n-planes in R*". Then, through any point in
R*\O, there passes at most one n-plane of ®. In order that through any
point in R*\O, there passes exactly one n-plane of @, it is necessary
and sufficient that n = p = 2,4, or 8.

THeoreM 1.3. (Wong [8, pp. 62-64]). Any p-dimensional maximal set of
mutually isoclinic n-planes in R*", if regarded as a submanifold of the
Grassmann manifold of n-planes in  R*", is diffeomorphic with the p-sphere SP.

Since the unit sphere $*"~' in R*" is intersected by an n-plane in a great
(n—1)-sphere, a consequence of Theorems 1.2 and 1.3 is

THeOorREM 1.4. (Wong [8, pp. 65-66]). In R?*" n =24, or 8, the
intersection of the unit sphere S*"~1 by any n-dimensional maximal set of
mutually isoclinic n-planes furnishes a fibering of §2"~' by S""' over S

The above three theorems direct our attention to the three special cases
n = 2,4,8, for which we now prove:
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THEOREM 1.5.

(1) For n = 2, every maximal real solution of the Hurwitz matrix
equations (1.2) is orthogonally similar to the maximal solution {B,} where

(1.3) | BI:[_I 1].

(@) For n = 4, every maximal real solution of the Hurwitz matrix
equations (1.2) is orthogonally similar to the maximal solution {B., B,, B3}
where

1 1 1

(1.4 B = | , By =
-1 1 -1

(i) For n =8, every maximal real solution of the Hurwitz matrix

equations (1.2) contains either 3 or 7 matrices. In the latter case, it is
orthogonally similar to the maximal solution {By, .., B;}, where

(1.5) B 1 ] B 1 ]

&
I
=
I
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&
I

| —1

Proof. This theorem is a reformulation of Theorem 8.1 in [8, pp. 107-109].
In fact, if we denote by C; the matrices used in Theorem 7.2 in [8, pp. 54-56]
and by U the diagonal matrix (1, —1,.., —1) of order n, then we can
easily verify that B, = UC,U 1.

An immediate consequence of Theorem 1.1 and 1.5 is the following

THEOREM 1.6.

(i) In R* every maximal set of mutually isoclinic 2-planes is of
dimension 2 and is congruent to the set ®, consisting of the 2-plane
x = 0 and the 2-planes y = xB(A), where

MM
(16) B(}\«) = )\,0 + )\lel = .
—Xl )\‘()

(i) In R®, every maximal set of mutually isoclinic 4-planes is of
dimension 4 and is congruent to the set ®, consisting of the 4-plane
x = 0 and the 4-planes y = xB()\), where

Mo A V) A3

-\ A Ay —A
(L.7)  B(\) = Ao + MB, + MB, + M3B; = : 0 : 2
() 0 18] 21822 3023 ‘7&2 —7\,3 XO )\‘1 ,

- )\3 )\'2 - )\11 9\40__



(1.8)
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(ili) In R'®, every maximal set of mutually isoclinic 8-planes is of
dimension 4 or 8. Every maximal set of dimension 8 is congruent to the
set  ®g consisting of the 8-plane x = 0 and the 8-planes y = xB(A),
where

B()\.) = 7\,0 + )\'IBI + ... + )\47B7 =

In (1.6), (1.7) and (1.8) above, the A, in Ay, + A,B; + ... stands for the
scalar matrix A,l.

REMARK. The maximal set ®, of mutually isoclinic n-planes in R*" in
Theorem 1.6 is congruent to that in Theorem 7.2 in [8, pp. 54-56] under
the orthogonal transformation

f: (xl 9 x2> eeey xn: xn+l ) xn+2: eeey x2n)
- (xly =X ey T Xy Xpt1s T Xp+25 _XZH)?

which obviously leaves invariant the n-planes O:y = 0 and O':x = 0.
To see this, let us denote by ¥, the maximal set of mutually isoclinic
n-planes in Theorem 7.2 in [8, pp. 54-56] and write the equations of these
n-planes as x = 0 and

y - X(?\.0+7L1C1+...+)\4n_1cn_1) .

Then f sends ¥, to the set f(¥,) of mutually isoclinic n-planes with
equations x = 0 and

yU - XU(?\‘O+),\'1C1+"'+)\'n—1Cn—1)>
1.e.,
y = xUko+MCi+..+%,C, U1,

where U is the diagonal matrix (1, —1, .., —1) of order n. But, as we have
seen in the proof of Theorem 1.5, these equations are the same as x = 0 and

y == x()bo‘}"}\-lBl +...+)\‘n_1Bn_1) o
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Therefore, f(¥,) is the set ®, of mutually isoclinic n-planes in our
Theorem 1.6.

2. SOME FURTHER RESULTS

From now on we shall confine our attention to n-dimensional maximal
sets of mutually isoclinic n-planes in R?", and therefore, n has always the
values 2, 4, or 8 unless stated otherwise.

In this section, we prove a few more theorems for use in § 3. In these
theorems, the indices a, b have the range of values (0, 1,..,n—1); B, = [
is the identity matrix of order n; By, .., B,_, are the n x n matrices listed
in Theorems 1.5 and 1.6; A = (A,) i1s an ordered set of n real parameters;
and

BM =Y %B,, NO)=Y 2.

Moreover, for any matrix M, we denote its transpose by M.

THEOREM 2.1.

i) BMANBMT = NWI.

) If A#0, then

B(\M)~! = BW)T/N() Z ABI/N(),

so that if A # 0, the equation y = xB(\) is equivalent to the equation
x = yB(W', where p = A/N(\) # 0.

(ii1) det B(A) = + (N(V)"?.

(tv) If N() =1, then B(A)eSO(n), where SO(n) is the set of all
orthogonal matrices of order n and determinant + 1.

Proof.  B(M)B = (3 MB.) ) O, MBj) = MMBB]

= Y A2B,BT + Y )BT +B,BT),

which, on account of the Hurwitz matrix equations (1.2), is equal to

Z A2 = N(MI. This proves (i), and also (i1). To prove (iii), we first note
that since B(A) is a square matrix of order n, det B(A) is a homogeneous
polynomial of degree n in the A,’s, and it follows from (1) that

(det B(W)? = det (BWBMWT) = (N(A)".
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Therefore,

(2.1) det B(A) = + (NOV)"? = + AWE+Ai+...+22_ )2
= + (A§ -+ other product terms in A,) .

On the other hand, since B, = I, and By, .., B,_; are all skew-symmetric
matrices, the diagonal elements of B(A) are all equal to A,, and none
of the other elements of B(A) is equal to A,. Therefore,

det B(A) = A} + other product terms in A, .
Comparison of this with (2.1) gives (iii). Finally, (iv) follows immediately

from (i) and (i11).

Returning to Theorems 1.2 and 1.6, we now prove

THEOREM 2.2. Let ®, be the maximal set of mutually isoclinic n-planes
in R?" described in Theorem 1.6, and let (u,v) be any vector in R*"
If u +# 0, then the unique n-plane in ®, containing (u,v) is

(2.2) y = x[oul —(wB,u")B, —..—(wB,_ u")B,_]/(uu)T .
If v # 0, then the unique n-plane in ®, containing (u,v) is
(2.3) x = y[uwT —uBTv")BT —..—uBI_ v)BI J/wv)".

Here, By, .., B,_, are the matrices in (1.3), (1.4), or (1.5) according as
n=24 or &

Proof. We shall prove only (2.2) for the case u # 0, as (2.3) for the
case v # 0 can be proved similarly. Suppose that u # 0 and

(2.4) y = x(ho+hBi+..+A, 1B, 1)
is an n-plane in ®, containing (u, v). Then we have
v =uo+ABi+..+A_1B,4),

which can be written as

v = [MAs oo Ayi] uB,

L UB,,_l —J
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Multiplying the two sides of this equation on the right by
[uf, —Byu’, .., —B,_u"]
and making use of the Hurwitz matrix equations (1.2), we get
o[u?, =Byu”, .., —B,_1u"] = [Aohq o Ay 1] (@u)I .

Since uu® # 0, the above equation determines the A,’s uniquely in terms
of u, . Now with these values of A,’s, equation (2.4) becomes equation (2.2),
as we wanted to prove. Incidentally, the above proof also confirms that there
is exactly one n-plane in ®, containing the vector (u, v) (cf. Theorem 1.2).

Next, we give a direct proof of Theorem 1.3 for the special cases
n = 2,4, 8, and state the result as

THEOREM 2.3. The maximal set ®, = {x = 0,y = xB(\)} of mutually
isoclinic n-planes in R*", n = 2,4, or 8, can be given a differentiable
structure so that it is diffeomorphic with the n-sphere S".

Proof. Let us regard @, as a point set whose elements are the n-planes
in ®,. Then, the subset ®,\O' = {y = xB(A)} of @, is an open subset
in which we can define a coordinate system by assigning to the element
y = xB(A) the coordinate A = (Ag, Ay, .., A,—). The subset ®,\O = {x = 0
and y = xB()A), where L # 0} of @, is also an open subset. By Theorem 2.1 (ii),
this subset is the same as the subset {x = yB(w)"}, and so, we can define
in it a coordinate system by assigning to the element x = yB(W)? the

coordinate p = (Wg, My, -y My— 1) Thus @, is covered by the two coordinate
neighborhoods

(2.5) (@\0% 1),  (2,\0, ).

Moreover, we can see from Theorem 2.1 (ii) that for any element in

(@,\0%) N (®,\0) = ®,\{0*, O}, its two coordinates A, p, both nonzero, are
related by

(2.6) = A/N(MA), or equivalently, . = p/N(n).

Hence, @, is an n-dimensional manifold.
To show that ®, is diffeomorphic with the n-sphere S, we view S"
as the unit sphere x{ + .. + x2,; =1 in R"*!, and use stereographic

projections. Let ¢,(0, .., 0, 1) and g,(0,..,0, —1) be respectively the north
and south poles of S". Then S" is the union of the two open subsets
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S"\q; and S™\g,. For an arbitrary point ¢ in S"\q,, let the line g,q meet
the equator n-plane x,,, = 0 at the point (A, 0); and for an arbitrary point ¢
in S"\q,, let the line ¢,q meet the equator n-plane x,,, = 0 at the point
(1, 0). Then S” is covered by the two coordinate neighborhoods

(2.7) (S"™\g1, M),  (S"\q2, 1.

Moreover, it is easy to verify that for a point in S™\{q;, q,}, its two
coordinates A and p are also both nonzero and related by (2.6).

It now follows from (2.5), (2.6) and (2.7) that if f; is the map from
®,\O* to S"\q, sending an n-plane in ®,\O* with coordinate A to the point
in S"\q, with the same coordinate A, and f, is the map from ®,\O to
S™\q, sending an n-plane in ®,\O with coordinate p to the point in S"\g,
with the same coordinate p, then f,, f, combined will give a difftomorphism
from @, to S”. ‘

In the: remainder of this section, we are concerned exclusively with the
matrices B(A) with N(A) = 1. For convenience, we shall denote such matrices
by B(A'), with the understanding that A’ always satisfies the condition
N(O\) = 1.

We know from Theorem 2.1 (iv) that every B(A') belongs to SO(n).
Let us now regard SO(n) as the special orthogonal group. Then the set
of elements B(A') of SO(n) will generate a subgroup of SO(n). We wish to
know what this subgroup of SO(n) is, and the next three theorems will
give us the answer.

THEOREM 2.4. For n = 2, the set of elements B(\) forms the group
SO(2) which is isomorphic with S*.

Proof. Since

}”0 )\‘1
BO\V) = and  det BW') = ()P + WP =1,
A1 A

the elements of SO(2) are the elements B(A') themselves.

THEOREM 2.5. For n = 4, the set of elements B(\') forms a 3-parameter-
subgroup of SO(4), isomorphic with S>.
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Proof. First, since N(\') = (Ap)? + ... + (A5)* = 1, the set B(\'), with a
natural topology, is homeomorphic with the unit 3-sphere S3 in R* Next,
using (1.4), we can easily verify that

B,By = —B;, BB, = —B,, BB, = —B;.

With this and Theorem 2.1 (ii), straight forward computation will show
that for any two elements B(A') and B(y') of SO(4), the product B(A)B(w)~*
is an element of SO(4) of the form B(V'), where the components of V' are
analytic functions of the components of A" and p'. This proves our theorem.

For the case n = 8§, we first observe that the elements B(A) of SO(§)
do not, by themselves, form a subgroup of SO(8). For example, although
B,, B, are both of the form B(L'), their product B,B, is not. In fact, we
have

THEOREM 2.6. For n = 8, the set of elements B(A) of SO(8) gene-
rates the group SO(8) itself.

Proof. Our proof consists of two steps (i) and (ii). In (i), we prove
that the 28 skew-symmetric 8 x 8 matrices B;, B;B;(i,j=1, .., 7, and i<j)
are linearly independent. In (ii), we prove that the Lie algebra of the subgroup
of SO(8) generated by the elements B(L') coincides with the Lie algebra
o(8) of SO(8). The assertion in our theorem then follows from the well-
known fact in Lie groups that there is a one-one correspondence between
the connected Lie subgroups of a Lie group G and the Lie subalgebras of
the Lie algebra of G.

() From (1.5), we see that the 8x8 matrices B;(i=1,..,7) can be
partitioned as
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1 J

where

1 O 0 1 1 0 0 1
I: = = =
[O 1]’ / [—1 O:}’ K [0 —l]’ L [:1 O]’

are 2 x 2 submatrices and each empty space represents a 2 x 2 zero-matrix O.
Since the matrices I, J, K, L have the properties

=1, J*=-I, K*=1, L*=1,
JK = -KJ=-L, KL= -LK=J, LJ=—-JL=-K,

we can easily verify that the products B; B;(i,j=1, .., 7, and i<j) are matrices
of the same form as B;, having some of O, +I, +J, +K, +L as
2 x 2 submatrices.

To prove that the 28 matrices B;, B;B; are linearly independent, we
construct the 8 x 8§ matrix

M = ZiOLiBi + Z o;;(B; B;) ,

1<j

where the o’s are some real numbers, and show that if M = 0, then all
the o’s are zero. Let M = [ M, ], where M, (h, k=1, 2, 3, 4) are the 2 x 2 sub-
matrices of M. Then by using the explicit forms of B; and B;B;, we can
write M as the sum of the following four matrices:

M;, J -J
M, J -J
Ms; J J
My, -J -J

+ Oys + Qg7 y I
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M, K K
K —K
= 0 + 03
M, 1 T
My, -7 1
B L ] B —L N
—L L
+ O3 J + Oz J
L J _ L J _J
— -7 — — -7 —
I I
+ Olye -K + 05y K
L K _ | -K ]
- - T
—-J
+ Oy 7 + Usg d I
| £ _ u L
1\413 i K 7 — K —
M. ~1
2 = 04 + Ois 4
My - 7 ] o —7 B
+ Qs _7 + Oyg I
L — _ - —J B
- K
+ Oy 7 + 037 7 K
L K | L -K B
i Jo7 T ~J 7
£ | N L
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M, B I -1
M;; . K Y K
M, o K v ~-K
7m L —7 I
- J J
L —L
+ O~ _I + U4 I
_J J
— K
—1 -1
+ Oy I + Q35 ]
K - K
—L - L
—-J J
+ Qs _J + O3y 7 .
L L

Now, M = 0 means that all its submatrices M, are zero. Since
I, J, K, L are linearly independent, the equations M, = 0 are equivalent
to a number of linear equations in the o’s, and from these linear equations
we can easily see that the o’s must all be zero. For example, it is obvious
from the equations

M, = (0 +03)K + (03— ,)L — (g +0s7)] — (0ty7—0s6)] = 0,
My, = (g —0oy3)] + (03 +0y) + (—oge+0s7)K — (d47+0s6)L = 0
that
Oy,  Oyz, Oz, gy, Ogg, QAsy, Qygy, Osg
must all be zero. Thus we have proved that the 28 matrices B;, B;B;

are linearly independent.

(ii)) Let G be the Lie subgroup of SO(8) generated by the elements
B()\), and g its Lie algebra. Then g is-a Lie subalgebra of the Lie algebra
0(8) of SO(8). We now prove that in fact g = 0(8).

From the theory of Lie groups:-we know that if t —» f(t), where t e R
and f(t)e G, is any curve .in ‘G passing through the identity element
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[ = f(0) of G, then the velocity vector f'(0) of this curve at I is an
element of g. Now

t > fi(t) = (cos I + (sin B, (i=1,..,7)

are obviously curves in G such that £;(0) = I and f;(0) = B;. Therefore,
B; are all elements of g.

Since g is a Lie subalgebra of o(8) and B; € g, the Lie products [B;, B;]
= B;B; — B;B; = 2B;B;, where i,j = 1,..,7,and i < j, are all in g.

We have thus proved that the 28 linearly independent skew-symmetric
matrices, B;, B; B; all belong to g = o(8). Since o(8) is the Lie algebra of all
skew-symmetric matrices of order 8 and is therefore of dimension 28,

g coincides with o(8). This completes the proof of Theorem 2.6.

3. THE SPHERE BUNDLES S*" ! - @, , n = 2,4, OR 8,
WITH FIBERS ON MUTUALLY ISOCLINIC n-PLANES IN R?"

In R* n = 2,4, or 8, provided with rectangular coordinate system
(x,y), let S*"~1 be the unit sphere and @, the maximal set of mutually
isoclinic n-planes {x = 0, y = xB(A\)} defined in Theorem 1.6. Then with
the preparations we have made in § 2, we can now prove

THEOREM 3.1. In R*, n = 2,4, or 8, the n-planes in the maximal set

D, of mutually isoclinic n-planes slice the unit sphere S*"~' into a fiber
bundle

fn = (SZTI—I’(DH,T[, Sn_l’ Gn)’
with base space ®,, projection m, fiber S""' and group G,, where
Gz = Sl, G4 = S3, and Gg = SO(8).

Proof. We prove by exhibiting all the ingredients of a representative
coordinate bundle.

(1) The bundle space S*"~! has the equation xx” + yy” = 1in R?"

(2) The base space @, is covered by the two coordinate systems
(2.5) (@,\0% %), (@,\0, p)

as in the proof of Theorem 2.3, where O+ is the n-plane x = 0, O is
the n-plane y = 0, A is the parameter in the equation y = xB(A) of an
n-plane in ®,\O%, and p is the parameter in the equation x — yB(w)* of
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an n-plane in ®,\O. Moreover, for an n-plane in the intersection ®,\{0*, O}
of the two coordinate neighborhoods, its two coordinates A and p, both
nonzero, are related by

(2.6) uw = A/N(A), orequivalently, A = pu/N(p).

(3) The projection w: S**~! — @, is the map which sends a point of
S?"~1 to the unique n-plane in ®, containing this point (cf. Theorems 1.2
and 1.4).

To see that 1 is continuous, we let
Vi=1{xyesS" tix£0}, V,=1{xyeS" 1.y+#0}.

Then {V,, V,} is an open cover of $*"~! and n(V,) = ®,\O%, n(V,) = ®,\O.
Now by Theorem 2.2, the restriction w|V,; of m to V; sends a point
(u,v)e V, = S*"°! to the n-plane y = xB(A) in ®,\O* with coordinate

A= (Mo, Apson Myoy) = (u”, —vByu’, .., —0B,_u")/(un)" .

This shows that wn| V', is continuous. Similarly for m|V,. Therefore, m is
continuous.

(4) The fiber S"~ ! is the unit sphere tt* = 1 in R". Here, t = [t; ... t,]
is a rectangular coordinate system in R".

(5) The group G, of the bundle is G, = S! = SO(2), G, = S* = SO(4),
or Gg = SO(8), for n = 2, 4, or §, respectively.

To see that G, acts on S" ' effectively, we need only observe that if
M is an element of G, = SO(n) such that tM = ¢t for all ¢t with ¢t = 1,
then M = [.

(6) With the coordinate systems (2.5) covering the base space ®, as
described in (2), the coordinate functions are the maps

(bl : ((Dn\ol) X Sn—l — Tc_l((bn\ol) »
(1)2: ((Dn\o) X Sn—l - n—l((Dn\\O) >

defined respectively by

(3.1) b D) = (ry) = L BR)

| o Y 1+ N
’B T 4

(3-2) Bt 1) = (¢, ) = LBWL0)

1+ N(w
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Here, the ) in &,(A, f) denotes the n-plane in @,\O" with equation
y = xB(A), and the p in ¢,(y, ') denotes the n-plane in ®,\O with equation
x = yB".

To justify our definition, we must show that ¢,, ¢, are homeomorphisms.
Obviously, they are continuous maps. To find ¢! which sends (x, y) to
(A, t), we first note that x # 0 (cf. (3) and the last equation (3.1) is
equivalent to

(3.3) y = xB\), t=x,/1+ NQM).

Now, equation (3.3), gives t as a continuous function of x and A, and
by Theorem 2.2, equation (3.3); determines A as a continuous function of
x and y. Therefore, A and ¢ are continuous functions of x and y. This
proves that ¢ ;' is well defined and is continuous, and consequently, ¢,
is 2 homeomorphism. Similarly for ¢,.

(7) The projection m and the coordinate functions ¢,, ¢, as defined
in (3) and (6) satisfy the conditions

(3.4) (med) (A1) = A, (mody) (1, t) = p.

In fact, from (3.1) and (3.3), we see that the point (x,y) = ¢,(A, t) of S !
lies on the n-plane y = xB(A). Therefore, by (3), m(x,y) is the n-plane

y = xB(}\) in ®,\O" with coordinate A. This proves (3.4);. Similarly for
(3.4),.

(8) Let B be any fixed n-plane in ®,\{O*, O} with coordinate A in
®,\O* and coordinate p in ®,\O, and let ¢, 5 and ¢, g be the two
homeomorphisms §"" ' — n~}(B) = S?"~ ! defined by

G1 () = &A1), by p(t) = by, 1).

 Then ¢ 5 8 ° ®; g is a homeomorphism in the fiber "~ 1, called a coordinate
transformation.

We now show that this coordinate transformation coincides with the
action of an element of the group G,. Suppose that t is any point of

S$"~1! and
((bz_,%lod)l,B) () =tes 1.
Then

by p(t) = &, 8(t), e, b, t) = &y, ).
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Now, by (3.1) and (3.2), this equation is the same as

(3.5) (t, tB())) _ (¢BWT, t)

J1I+ NN ST+ Nyw

Since the two coordinates A, u of the n-plane B satisfy the conditions

L#0, p#0, BM'=BR",
p=%NR), *=wNw, NMNW =1,

we can easily verify that equation (3.5) is equivalent to
(3.6) t' = tB(\)/N(W)Y?,

and this, on putting A’ = A/N(A)'/?, we can write as
(3.6) t" = tB(\), where NQ)=1.

The transformation (3.6), or equivalently, (3.6'), is then a coordinate trans-
. formation in the fiber S"~!. Now, by Theorems 2.4, 2.5 and 2.6, G, is the
subgroup of SO(n) generated by the set of elements {B(\): N(A') = 1} of
SO(n). Therefore, the coordinate transformation (3.6") coincides with the action
of an element of G, .

(9) Finally, we see from (3.6) that the map
(@,\0%) N (@,\0) = ¢,\{0", O} > G,,
defined by B — &5 3 ¢ g, can be expressed in coordinates as
A — BL)/N(L)2
Therefore, 1t 1s continuous. —

Thus, with the ingredients (1)-(9) exhibited above, we have constructed
a representative coordinate bundle of the sphere bundle .#, in Theorem 3.1.

REMARK 1. In Theorem 2.3, we have shown that ®, is diffeomorphic
with S". Therefore, the three sphere bundles .#, in Theorem 3.1 are topo-
logically the same as some sphere bundles $*"~! — S" by S"~ 1. In fact, we
shall prove in § 5 that they are topologically essentially the same as the
three Hopf-Steenrod sphere bundles.

REMARK 2. The coordinate functions ¢, and ¢, which we used in (6) were
not accidentally come by. They were obtained in the following way. By
definition, the coordinate function

-
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;1 (0,\0Y) x 571 > 17 H(@,\0Y) < §7
is 2 homeomorphism sending
A 1) = (x, y) e 1™ H(@,\O),

so that x, y are some continuous functions of A and ¢, and A, ¢t are some
continuous functions of x and y. These functions are not arbitrary, but should
satisfy certain conditions. First, they must be such that (woy) (A, 1)
= m(x, y) = M\ (cf. (7). Therefore, x and y must be related by

(3.7) y = xB().

Secondly, since (x, y) € §2"~ !, we must have xx” + yy’ = 1. Furthermore,
because of (3.7) and Theorem 2.1 (i),

yy* = xB(\) (xB\)"T = xx"N(A).
Therefore,
(3.8) xxT = (1+N(W) ™t .
Finally, since t € S"~ ', we must have
(3.9) it = 1.

Conditions (3.7), (3.8) and (3.9) suggest that the simplest possible choice
of the continuous functions x, y of A and ¢t which define our ¢; are those
given in (3.1). Similarly for ¢, .

With slight modification, we can prove

THEOREM 3.2. In R*", n = 2,4, or 8, the n-planes in the maximal set
®, of mutually isoclinic n-planes slice the space R*"\O into a fiber bundle

S, = (R*O0,0,,n, R"\O, G,xp,)

with base space ®,, projection m, fiber R™O and group G, x p,,
where G, =S', G, =8> and Gg = SO®), and p, is the group of
similitudes in  R™\ 0. |

Here, by a similitude in R™0, we mean a transformation of the form
t — tp, where p is a positive real number.

Proof. The proof is similar to that of Theorem 3.1 but with the following
difference. The bundle space is R*"\O provided with a rectangular coordinate
system (x, y), and the fiber is R"\O provided with a rectangular coordinate



186 Y.-C. WONG AND K.-P. MOK

system t; whereas, the base space ®,, with coordinate systems (2.5), is the
same as that in the bundle .#,. The projection 7« is the map which sends a
point of R*\0 to the (unique) n-plane in @, containing this point, and the
two coordinate functions

¢1: (@,\0%) x (R\O0) - n~{(P,\0%),
¢,: (2,\0) x (R"\0) » ™ }(P,\0)
are defined respectively by
(3.10) o1k 1) = (x, y) = (¢, tB()
(3.11) b 1) = (¢, ¥) = ('BW", t).

It readily follows from (3.10) and (3.11) that, for any fixed B e ®,\{O"*, O}
with coordinate A in ®,\O", the coordinate transformation ¢; o ¢ g in
the fiber R"\O sends ¢ to

(3.12) t = tB(A),
which, because A # 0, can be written
(3.12) = (tB(?x)/N()\,)l/z)N(}.)l/z.

Since B(L)/N(MY? e G, and t — tN(A)'/? is a similitude in R™\ O, (3.12') shows
that the coordinate transformation t — t' coincides with the action of an
element of G, x p,. Finally, by (3.12), the map ®,\{O*, O} —» G, x p, defined
by B —> ¢ 5 5 ¢y gcan be expressed as A — B()), and is therefore continuous.

The relationship between the bundle .#, in Theorem 3.1 and the bundle
S L, in Theorem 3.2 is described in the following

THEOREM 3.3.
(i) The bundle
S, = (R*™O0,?,,n, R\O, G, % p,)

is equivalent in G, x p, to the bundle
SL = (R*\0,d,,n, R\O, G,)

with group G,,.
(i) The bundle
S, =(*"1Lo,n "G,

is a subbundle of the bundle £, in (i)
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Proof. (i) This is an immediate consequence of a result of Steenrod in
[5, p. 56, §12.6]. In fact, from (6) and (8) in the proof of Theorem 3.1,
we easily see that the coordinate functions

¢4 : (@,\04) x (R\0) » 1™ '(@,\0%),
¢4 (@,\0) x (R\O) » n~ (®,\0)
of # &' can be defined respectively by
t, tB(A)
ct)’l()\‘a t) = ( ) 5
1+ NQR)
(B, )

J1T+ Nw

and that for any fixed element B € ®,\{O*, O}, the coordinate transformation
SLod) gin RMN\O is t —» ¢ = tB(A)/N(M)?, and thus it cooincides with
the action of an element of G, .

G5, ) =

(i) Obviously, " ! = R™ O is invariant under G, . Therefore, according
to a result of Steenrod [5, p. 24, 2nd paragraph], there is a unique
subbundle of .#.# with fiber "~ ! and the same coordinate neighborhoods
and coordinate transformations as .#.%,. Comparison will show that this
subbundle is precisely our .#,.

4. A UNIFIED TREATMENT OF THE THREE HOPF-STEENROD BUNDLES

In the early 30’s, H. Hopf [2, 3], using complex numbers, quaternions,
and Cayley numbers, discovered his fiberings of $*"~! by S$"! over S,
n = 2,4, 8 Later in 1950, N. Steenrod [5, pp. 105-110] used these fiberings
of Hopf to construct three sphere bundles, which we here call the Hopf-
Steenrod bundles. But he did this in a roundabout way. For the two cases
n = 2,4, he obtained the bundles S — §? and §7 — S§* as special cases
of a general result on “sphere as a bundle over a projective space”. For
the case n = 8, he obtained the bundle S'° — S® as a subbundle of a linear
bundle which he constructed by using Cayley numbers. This being the case,
he did not need to define the coordinate functions for his bundles. Still
later in 1952, P.J. Hilton [1, pp. 52-55] showed, in a direct manner, that
the Hopf fiberings S**~* — S" n = 2,4, 8, are fiber spaces by exhibiting
some sets of coordinate functions. But he did not calculate the coordinate
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transformations or mention the bundle groups because they were not needed
for his purpose.

In this section, we first describe the fiberings of S*"~! by S"~! over
S", n = 2,4,8, as Hopf first discovered them, and then, using Hopf’s ideas
and method and taking into consideration the work of Steenrod and Hilton,
we give a unified and explicit formulation of the structures of the three
Hopf-Steenrod bundles §*"~' — S". In the next section, we shall show how
the Hopf-Steenrod bundles are related to the sphere bundles we constructed
in § 3.

Let Q,,n = 2,4, 8, be respectively the (hypercomplex) systems of complex
numbers, quaternions and Cayley numbers. (See Appendix 1 for properties of
Cayley numbers.) Suppose that I,,a = 0, 1,..,n — 1, are the base elements
in Q,. Then any element X of Q, can be uniquely expressed as

n—1
X = Za:Oxa+1 Ia,

where x,, .., X, are real numbers called the components of X. Furthermore,
let us define

| X | = (ZZ;;xa%JrJl/z

as the length of X. Then we can identify Q, with the Euclidean n-space
R" by taking the components (x,, .., x,) of an element X in Q, as the
rectangular coordinates of the point X in R".

Consider now the space Q, x Q, of ordered pairs (X, Y) of elements
of Q,, and let x = (x{, .., x,) and y = (x4, ., X5,) be the components
of X and Y. Then we can identify Q, x Q, with R*" by taking (x, y)
= (X{, s X} Xpt1» - Xz,) @S rectangular coordinates in R*". Calling (X, Y)
the Q,-coordinates in R?", we define a Q,-line in R®" as either the point set
X =0, or a set of all the points whose Q,-coordinates (X, Y) satisfy an
equation of the form Y = CX, where C is some element of Q,. We can easily
see that the Q,-lines are n-planes in R*" with the properties that through any
point in R*"\ 0, there passes one and only one such n-plane, and that any
two such n-planes intersect only at the origin of R*",

Suppose that S?"~ ! is the unit sphere | X |2 + | Y |? = 1 in R?". Then it
follows from the above that the great (n—1)-spheres in which S2"~! is
intersected by the Q,-lines are such that one and only one of them passes
through each point of S?*"~!, and so they form a fibering of S?"~! by
g

Closely associated with this fibering of S**~! is a map p from S§2"!
onto the n-sphere S”, defined as follows. First, we regard S" as R" closed
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by the point co at infinity, so that " = R* U oo = @, U . Then p sends
each point of S?"~! which lies on a Q,line Y = CX to the point
CeQ, c S", and sends each point of S*"~! which lies on the Q,-line
X = 0 to the point oo €S" In other words, the map p:S*"~ ' — §" is
defined by

Yx-' if X #0,

4D P, ¥) = {oo it X =0

where (X, Y) is any point of §"~ 1. It is easy to see that p is a continuous
map, and that the inverse image of each point of S” is one of the great
(n— 1)-spheres in which S*"~? is intersected by the Q,-lines.

The fibering $*"~! — §” by S"~ ! constructed above is then the famous
Hopf fibering, and the map p is the Hopf map related to it.

We now prove the following theorem which gives a unified and explicit
formulation of the three Hopf-Steenrod bundles $?" ! — S" n = 2,4, 8.

TuHEOREM 4.1. Let Q,, n = 2,4, 8, berespectively the systems of complex
numbers, quaternions and Cayley numbers, and let the spaces Q,, O, x O,
be identified with R", R” x R" = R?*", respectively. Then the set of Q,-lines
{X =0,Y = CX} in R slice the unit sphere S*"~' in R?® into a
fiber bundle

%yn — (S2n—1’ Sn’ D, Sn—I’ O(n))

with base space S" = Q, U oo, projection p, fiber S""' and group the
orthogonal group O(n).

Proof. We prove by exhibiting the ingredients of a representative
coordinate bundle.

(1) The bundle space S*"~! is the unit sphere | X |2+ |Y |2 = 1 in
R™ =0, x Q,.

(2) The base space S” is identified with R" U oo = 0, v oo. Therefore,
S" is covered by the two coordinate neighborhoods

Qs SN0 = (QU)\0 = (@\0) U o0,

with elements of Q, and co serving as coordinates.

(3) The projection p: §*"~* — §" is the Hopf map defined by (4.1).

(4) The fiber S"~ ' is the unit sphere | X | = 1in R" = Q.

(5) The group O(n) of the bundle acts on §" ! effectively.
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(6) Let C, D be elements of Q, such that | D| = 1, so that D represents
a point of $"~*. Then the two coordinate functions are the homeomorphisms

Vi:Q, x S - pTHQ,),
V21 (SMO0) x §*71 - pHS™O0),

defined respectively by

(D, CD)
4.2 C, D) = ’
(4.2) V,4(C, D) PATAE
(C™'D, D)
V,(C, D) = ., where C # oo,
J1+1/CP?
(4.3)

‘sz(ooa D) = (Oa D) .

That {, I, are indeed homeomorphisms is easy to verify.

(7) It can readily be seen from (4.1), (4.2) and (4.3) that the projection p
and the coordinate functions \, , \/, satisfy the conditions:

4 {@omuaD)=c,
' (poV,)(C,D)=C if C# o, and (poyy)(co,D) = .

(8) For each fixed point C in the intersection Q, n (S"\0O) = Q,\O of
the two coordinate neighborhoods in the base space S", let ; - and V,
be the two homeomorphisms $"~! — p~}C) = §*"~! defined by

\L’l,c(D) = \lfl(Ca D), Wz,c(D) = \|12(C, D) >

where \r;, Y, are the coordinate functions defined in (6). Then, we can

easily verify by using (4.2) and (4.3) that the coordinate transformation
V5 & oV cin the fiber S"~ 1 is

(4.5) D - CD/| C],

where D with | D| = 1 is a variable point of S"" ! < Q,. Now since the
components of the product CX of any two elements C, X of Q, are
bilinear functions of the components of C, X, the map X - CX/|C| is a
linear transformation in R" = @, . It is in fact an orthogonal transformation
because | CX/| C|| = | X |. Therefore, the coordinate transformation (4.5)
coincides with the action of an element of the group O(n).

(9) Finally, from the bilinearity of the product CX, it also follows that
the coordinate transformation (4.5) varies continuously with C. Therefore, the

i



«g
3

i

il
5

ISOCLINIC PLANES 191

map from Q, N (S"\0) = Q,\0 — O(n) defined by C - Y5 ¢V, ¢ is con-
tinuous.
Thus, with the ingredients (1)-(9) exhibited above, we have constructed

a representative coordinate bundle of the bundle s# %, in the theorem.

REMARK. The coordinate functions {; and {, as given in (4.2) and (4.3)
were arrived at as follows. By definition, \; is a homeomorphism sending

(C,D)eQ, x 8" = (X, Y)ep HQ,) = 5.

Here, X and Y are not arbitrary functions of C, D, but must satisfy
certain conditions. First, they must satisfy (4.4),, so that (po\,) (C, D)
= p(X, Y) = C. Therefore, by (4.1) X and Y are related by

(4.6) Y = CX.

Secondly, since (X, Y) is a point of S*""' | X |*> + | Y |? = 1. Combining
this with (4.6), we get

(4.7) X2 =11+ C]Y.

Finally, since De $" ! < Q,,
(4.8) |ID| =1.

Conditions (4.6), (4.7) and (4.8) suggest that the simplest choice of V, is
(4.2). Similarly, we choose (4.3) as \, because of conditions (4.4), .
Similar to Theorem 4.1, we have

THEOREM 4.2. In R*, n = 2,4, or 8, the Q,lines slice R*\O into
a fiber bundle

S &L, = (R’™O0, S", p, 0,\0, GL(n, R))

with base space S" = Q, U o, projection p, fiber Q\O, and group the
general linear group GL(n, R).

Proof. The proof is similar to that of Theorem 4.1, but with the following
difference. The projection is the map p: R*"\O — S" defined by

YX™' if X #0

(4.9)
if X=0;
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and the two coordination functions

\l’l: Qn X (Qn\\O) - p_I(Qn) D

V51 (SMO) x (2,\0) = p~H(S™\0)
are defined respectively by
(4.10) V,(C, D) = (D, CD),

4.11) {%(C’ P)=(CD,D), where C# o,

\llz(ooa D) = (0> D) .

The coordinate transformations {5 ¢ ° V; ¢, where C € 0, n (S"™\O) = Q,\O,
are the linear maps D — CD in the fiber Q,\0.

The relationship between the bundles # &, and ¥.Z, is described in
the following theorem, the proof of which is similar to that of Theorem 3.3.

THEOREM 4.3.
(1) The bundle

S&L, = (R*™O0, S", p, 0,\0, GL(n, R))
is equivalent in GL(n, R) to the bundle
&, = (R*™0, S" p, 0,\0, O(n))

with group O(n).
(i) The bundle

HSF, = (S, 8 p, §" 1, O(n)
is a subbundle of the bundle S %,.

Let us now explain how the bundle #%, given in Theorem 4.1 is a
unified formulation of the sphere bundles S?"~! — S n = 2, 4, 8 constructed
by N. Steenrod using the Hopf fiberings, and how our construction incor-
porates the work of P. J. Hilton.

() Comparison of the ingredients of the sphere bundle # % ¢ in Theorem 4.1
with those of the fiber space S'° — S® of Hilton [1,p. 54] shows that
they have the same projection (4.1) and coordinate functions (4.2) and (4.3).

(b) Suppose that in the construction of the sphere bundle #.¥, in
Theorem 4.1, we use the “Q,-lines” X = CY instead of the Q,-lines Y = CX
in defining the projection p: S*"~! — S”". Then we can obtain another sphere
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bundle $2"~! — S" by using the ingredients of #°.%, but interchanging the
roles of X and Y, ie., by replacing

(i) the projection (4.1) by

Xy Xy ' if Y #O0,

and

(ii) the coordinate functions (4.2) and (4.3) by

4.2) Ui(C, D) = D)
’ 1 s - 1+|C|29
D,C™ D
¢2(C’D)=\/(T+1/{C)|2, where C # oo,
(4.3)

\IJZ(OO: D) = (D> 0) .

For n = 2, the X, Y, C. and D (with |D|=1) are all complex numbers.
On putting X = z,, Y = z,, C = p and D = ¢*, we can see immediately
that the projection (4.1) and the coordinate functions (4.2") and (4.3") are
exactly those used by Hilton [1,p. 51] to prove that the Hopf fibering
S — S? has a fiber space structure.

(c) Suppose that in the construction of the linear bundle &%, in
Theorem 4.2, we use the “Q,-lines” X = CY instead of the Q,-lines ¥ = CX
in defining the projection p: R**\O — S™. Then we can obtain another linear
bundle by using the ingredients of ¥.%¥,, but interchanging the roles of X
and Y, i.e., by replacing

(1) the projection (4.9) by

XY™ ! if Y=#0,

(4.9) p(X,Y) = { o gy -

b

and

(i1) the coordinate functions (4.10) and (4.11) by

(4.10) V(C, D) = (CD, D),
(4.11") {\l’,Z(C: D) = (D,C'D), where C # oo,
Vy(c0, D) = (D, 0).

o
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For n =38, the X,Y,C and D are Cayley numbers. On putting
X =¢ Y=4d, C=x and D =y, we can see immediately that the
projection (4.9) and the coordinate functions (4.10") and (4.11") are exactly
those of the linear bundle 4 constructed by N. Steenrod in [5, pp. 109-110].
Therefore, this linear bundle % of Steenrod and the linear bundle &% in
Theorem 4.2 are two slightly different representations of the same bundle.

5. COMPARISON OF OUR BUNDLES WITH THE HOPF-STEENROD BUNDLES

In § 3, we constructed the sphere bundles
g, =ES*""Lo,ns" G,), n=24238,

with fibers lying on mutually isoclinic n-planes in R*". In §4, we gave a
unified treatment of the classical Hopf-Steenrod sphere bundles

HSL, = (S8 p, "L 0m), n=2438,

using, as N. Steenrod did, the Hopf map and the hypercomplex systems of
complex numbers, quaternions and Cayley numbers. In this section we shall
prove that (i) the Hopf fibering S*"~* — §” and our maximal set of mutually
isoclinic n-planes in R?" are equivalent concepts (Theorems 5.1 and 5.2),
and (ii) the representative coordinate bundles constructed in §3 and §4
for the bundles .4, and #%, are topologically essentially the same
(Theorem 5.3). For convenience, the theorems will be stated and proofs
given for the case n = 8 only. Similar theorems hold for the cases
n = 2,4, and their proofs follow the same line and are simpler.

THEOREM 5.1. For n = 8, let us identify the space Qg of Cayley
numbers with R® by regarding the Cayley number
X = (xl +xZi+X3]+x4k 5 x5+x6i+x'7]+x8k)

as the point in R® with rectangular coordinates (X, .., Xg), and the space
Qs X Qg of ordered pairs of Cayley numbers with R® x R® = R'® by
regarding the ordered pair
(X, Y) = ((cy + x50+ Xaj + X4k , X5+ X6i+ X7+ Xxgk),
(Xo+ X0l + X1+ X12Kk, X153+ X140+ X1 5f+ X1 6k))
as the point in R with rectangular coordinates (Xy,..,Xg;Xg, -y X16).
Then, written in terms of x = [x; .. xg] and y = [Xg .. X16],
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(i) the equation X = 0 becomes x = 0;

(ii) the equation Y = CX becomes y = xB(A), where B(\) is the
8 x 8 matrix in Theorem 1.6 (iii) and A\ = (Ag, Ay, ..., A7) is related to
C by

(5.1) C = (Mgt hyithgf+Ask, hythsithgi+Ak).

Proof. Since (i) is obvious, we shall prove (ii) only. Let X = (p, q),
Y = (r,s) and C = (a, b). Then the equation ¥ = CX is

(r,s) = (a,b) (p, 9 = (ap—q*b, gqa+bp*),
1e.,

(Xo+Xq0i Xy 1+ X0k, X13+%404 X, 5]+ X1 6k)
X (X1 4+ Xl 4+ X3+ X4k, X5+ Xgl+ X] + Xgk)
= (Mo +Ayi+ g+ A3k) (x4 X0+ X + x,4K)
—_ (x5 —‘X6i—x7j_.x8k) (}\44+>\451+>\16]+7\47k) .
(x5 4+ xgi 4 Xx7] + xgk) (Mg + A+ A yj + Ask)
+ (Mg +Asi+Ag +Aqk) (x; — X o0 —X3j — x4k))
= ((hoxy—Ayx; —Ayx3—h3Xy) — (xsAg+X6hs+X7hg + Xgh)
+ (XoX2+7\1X£+7¥2x4_)¥3X3)i - (x5K5—x67\‘4—x77\,7+x87n6)i
+ (K0x3—7u1x4+7»2x1 +X3x,)j] — (x5x6+x67”7"_x7}”4_"x8}“5)j
+ (7&0X4_+>L1X3_7\«2X2+)\43X1)k - (XS)\47hX67\46+X77L5—‘x87\44)k Py
(5ho—Xehy —X7h, — Xghs) + (Aax1+Asxy+Aexs+Aqxy)
+ (Xshi+x6ho +X7hs —Xghy)i 4 (—Ayxy 4+ hsx; — hgXy + Ayxs)i
+ (xshy —XgAs+X7ho + XA )] + (-7»4x3+7»5x4+7h6x1~k7x2)j
+ (XsAhz+ Xk, — X7 +xgho)k + (—k4x4—k5x3+7»6x2+7»7x1)k),

which is easily seen to be equivalent to

[Xg ...X16] = [X1 ...xg]

' ; Le. to y = xB(\).
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An immediate consequence of Theorem 5.1 and Theorem 1.6 (iii) is the
following

THEOREM 5.2. The Hopf fibering S*> — S® and our maximal set of
mutually isoclinic 8-planes in R'® are equivalent concepts. More precisely,
under the identification of Qg x Qg with R® described in Theorem 5.1,
the set of Qg-lines {X = 0,Y = CX} in Qg x Qg corresponds to the
maximal set ®g of mutually isoclinic 8-planes {x = 0,y = xB(A\)} in R'®.

(In Appendix 2, we shall prove, by working directly with Cayley numbers,
that the Qg-lines, regarded as 8-planes in R*®, are mutually isoclinic 8-planes.)

We are now ready to prove our main

THEOREM 5.3. The representative coordinate bundles constructed in §4
and § 3 for the sphere bundles #¥s and Fg are topologically essentially
the same, with only the group SO(8) in #g replacing the group O(8)
in HSg.

Proof. We first identify the bundle space, fiber and base space in S# ¥
with those in #4, and then show that, under this identification, the pro-
jection, coordinate functions and coordinate transformations in # &g corres-
pond to those in f.

(a) The bundle spaces and the fibers.

The bundle space in #.%g is the unit sphere S¥°:| X |2 +|Y %2 =1
in Qg x Qg, and that in .4 is the unit sphere S'°: xx” + yy’ = 1 in RS,
The fiber in # ¥4 is the unit sphere S7:|X | =1 in Qg, and that in
J¢ is the unit sphere S7: ttT = 1 in R® Let us identify these two S*>’s and
two S7s by identifying Qg with R® and Qg x Qg with R!® = Ry x Ry
as in Theorem 5.1.

(b) The base spaces.

By definition, the base space in #.%g is S® = Qg U o covered by the
open sets »

{Q87 SS\O = (Qs\0) U 00} >

with the Cayley numbers and oo serving as coordinates. On the other hand,
the base space in #4 is @5 covered by the open sets

{@\0", Dg\O}
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such that an 8-plane y = xB(A) in ®,\O*' has the coordinate A and an
8-plane x = yB(W)' in ®g\O has the coordinate L.

Now Qg U oo can be regarded as the image of the unit sphere S° in
R® under the stereographic projection from the north pole of S® onto
the equator 8-plane, and (by Theorem 2.3) there is a homeomorphism from
@, to S® which sends the 8-plane y = xB(}) in @ to the point of S°
whose stereographic projection is the point A on the equator 8-plane.
Therefore, we can identify Qg U oo with @ by means of a homeomorphism
defined as follows.

Let j,: Qg — ®g\O* be the map which sends the point
C = (ho+Mi+hyj+Azk, g+ Asi+Ag+Ask)
in Qg to the 8-plane y = xB(}) in ®g\O* with coordinate
A= (MosMps e A7)
and j,: SB\O = (Q5\0) U o0 — ®g\O the map which sends the point

C = (Mo+Hyi+Hoj+ sk, Hatsitpg +HK)/N(W)
in 0g\O < S®\O to the 8-plane x = yB(p)" in ®z\O with coordinate

Ro= (Ho» s M9) 5

and the point oo € S®\O to the 8-plane O*: x = 0 in ®g\O with coordinate
w = 0. Then it follows easily from Theorem 2.3 and its proof that the map
jL Uj, is a homeomorphism from the base space S°® = Qg U 0 in H#Fy
to the base space g in SFg.

Let us identify these two base spaces by means of the homeomorphism

Ji Yz
(c) The projections.

We now prove that, under the identification defined in (a) and (b)
above, the projection p in # %4 coincides with the projection ©® in #.
Suppose that P is a point of S*> lying on the Qg-line Y = CX. Then
p(P) = Ce Qg = S® Now by Theorem 5.1, this point P lies on the 8-plane
y = xB(\)in R*®, where A = (A, Ay, ..., Aq) is related to C by (5.1). Therefore,
under the identification of S® and ®, defined in (b), p(P) = m(P). Suppose
now that P is a point of S*° lying on the Qg-line X = 0. Then p(P) = o € S&.
By Theorem 5.1, this point P lies on the 8-plane O‘:x = 0 in R'°.
Therefore, n(P) is the 8-plane O in ®g. Since the point oo € S® corresponds
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to the 8-plane O+ in ®; under the identification defined in (b), p(P) = n(P).
Hence our proof that p and © coincide is complete.

(d) The coordinate functions.

Consider first the coordinate functions
Vi:0g x 87T =>p7HQg) and ¢y :(@\OY) x §7 - 17} (Dg\OY)

in #Fg and F4, given by (4.2) and (3.1) respectively. Suppose that under
the identification defined in (b) and (a), the element (C,D)e Qg x S’
corresponds to the element (A, t) € (®g\O) x S’. Then C and X are related by

and D and ¢t by
(5.2) D = (t;+tyi+tyj+tsk, ts+tgi+t,j+tgk).

Now since De S’ = Qg and te S’ = R® we have |D| = 1 and T = 1,
and, by Theorem 5.1, the product CD corresponds to tB(A). Therefore,

| C1? =|CI?ID|* =|CD|? = tB() (tB(\)" = tBMBM)™t" = N(»),

and
(D, CD) (t, tB(V)

corresponds to  ¢(A, 1) = ————=—.
J1+]C|? ' J1+ N

Next, consider the coordinate functions

lIJI(C'7 D) =

V21 (S\0) x 87 - p7H(ST\0) and  ,:(D\O) x ST = 17 H(Ds\O)

in #¥5 and Sg, given by (4.3) and (3.2) respectively. Suppose that under
the identification defined in (b) and (a), the element (C, D) e (S8\0) x S’
corresponds to the element (y, t') € (Pg\O) x S7. Then, C and p are related by

(5.3) C = (Ro+Hyi+paf+psk, py+psi+peg+pqk)/N(p),

and D and t' by

(5.4) D = (t)+thi+tsj+tak, ts+tgi+tsj+tgk).

Since (5.3) implies that | C |2 = N(u)~*, (5.3) is equivalent to

(53) C7' = C*¥|C|? = (Ro—i—Hyf— M3k, —Hs—psi—pgi—HskK).
Therefore, by Theorem 5.1, C™'D corresponds to

t'(po—WiBy —..—1yB;) = t'BW)".
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Hence, it follows from the above that

(C™'D, D) - (¢BW"Y)
V,(C, D) = \/1 STTaE corresponds to ¢,(i, ') m

To complete the proof that , and ¢, correspond, we need only observe
that under the identification defined in (a) and (b), the point oo € S8\0
corresponds to the 8-plane O*: x = 0 in ®3\O, and the point

Y5(c0, D) = (0, D) e p™ '(S\O)
of S*° coincides with the point

05(0,¢) = (0, t) e n” H(P\O).

(e) The coordinate transformations and the bundle groups.

Suppose that in # ¥, C is any point in the intersection Qg N (S8\0)
= Q3\O of the two coordinate neighborhoods in the base space S8 and
D e Qg with | D| = 1 is a variable point of the fiber S”. Then the coordinate
transformations in the fiber S7 are D — CD/| C | (cf. proof of Theorem 4.1).
Now let & be the point in the intersection (®g\O*Y) N (@g\O) = @\{O, O}
of two coordinate neighborhoods in the base space ®@g in F¢ corresponding
to the point C under the identification defined in (b) above, and t € R® with
ttT = 1 the point of the fiber S7 in £ corresponding to the point D
under the identification defined in (a). Then C and A are related by (5.1),
and D and t are related by (5.2). Since (5.1) implies that | C|? = N())
and since by Theorem 5.1. CD corresponds to tB(A), the coordinate transfor-
mations D — CD/| C | in # ¥4 correspond to the coordinate transformations
t — tB(L)/N(\)'? in 7.

Since the bundle group of a coordinate bundle may be taken as the
group generated by the coordinate transformations in the fiber, or any
effective transformation group of the fiber containing this group, it follows
from the above that the bundle groups in #.%; and #4 are the same.
Now, the bundle group in #%; as originally given by N. Steenrod is
O(8); whereas, we have shown in §3 that the bundle group in £; is
Gg = SO(8) and, moreover, it cannot be replaced by any smaller subgroup
of SO(8).

The proof of Theorem 5.3 is now complete.

Let us now consider the cases n = 2 and 4. By using the results
similar to those in Theorem 5.1 for the case n = 8, we can prove, as in
(¢) above, that the coordinate transformations D — CD/|C| in #.%,
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correspond to the coordinate transformations t — tB(A)/N(A\)'/? in .#,, where
B()) are the matrices given in (1.7) in Theorem 1.6. By Theorem 2.5,
the elements B(L)/N(A)''? of SO(4) form a subgroup isomorphic with S°.
Therefore, the bundle group O(4) in # &, can be replaced by S°. Similarly,
the bundle group O(2) in #¥, can be replaced by S!. With these
observations, we can now prove the following theorem by proceeding as in
the proof of Theorem 5.3.

THEOREM 5.4. The representative coordinate bundles constructed in § 4 for
the sphere bundles H#S, and HF,, with bundle groups S* and S>
respectively, are topologically the same as the representative coordinate bundles
constructed in § 3 for the sphere bundles ¥, and .#,, respectively.

Finally, we remark that representative coordinate bundles of the bundles
S ¥, in Theorem 4.2 are topologically essentially the same as the repre-
sentative coordinate bundles of the bundles .#.¥¢, in Theorem 3.2.

APPENDIX 1. THE CAYLEY NUMBERS

The Cayley numbers, denoted by X, Y, Z, W, etc. are ordered pairs
(g1, q,) of quaternions subject to the rules and having the properties listed
below. The set of all Cayley numbers, therefore, forms a (non-commutative
and non-associative) real division algebra. No proof of the properties will be
given as they can all be checked by direct computations.

(1) The addition is defined by
41> 492) + (471,495 = (41+4971,92+493) .
The zero i1s O = (0, O).
(2) The multiplication is defined by
(41, 492) (@1, 9% = (41971 — 4592, 9291 +9297) ,

where q'}*, g5 are respectively the conjugates of (the quaternions) g4, q5.
The (two-sided) unit is 1 = (1, 0).

(3) Multiplication is
(i) distributive with respect to addition, i.e.,

X+Y)W =XW+ YW, WX+Y)=WX+ WY,
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(i) not commutative, 1.e., generally, XY # YX (but see (4) (iv) below);

(iii) not associative, i.e., generally, (X)W # X(YW) (but see (7) below).
(4) The real part of X = (q,.4,)is Re X = (Re g, 0) = Re g, . X is said to
be real if X = Re X: ie. (q,.q,) is real iff g, is real and g, = 0.

(i) Re(X+7Y) = Re(X) + Re(Y)

(ii) Re(XY) = Re(YX)

(ili) Re(CX) = 0 for all X implies that C = 0.

(ivi CX = XC for all X iff C is real. In this case, C = (c,,0), where
¢, = real, and CX = (c,q,,¢:9,) = XC.
(5) The conjugare of X = (q;.q,)is X* = (4T. —q>).
i) (X+Y)* = X*+ 7%,
(i) (XY)* = Y*X*
(i) X* = X iff X is real.
(6) The norm of X is the non-negative real number N(X) = XX*, which is

also equal to X*X. The length of X is the non-negative real number
| X | = NX)'? = (XXH)H2
) NX)=0iff X =0.
(i) If X #0, then X! = X* N(X) is a right and left inverse of X.
) N(XY) = NX)N(Y). Tt follows from this that XY = 0 iff X =0
or Y = 0.
(7) Though multiplication is generally non-associative,
i) (XY)Y* = X(YY™).
i) IfY #0,then (XY)Y ' = X = Y }YX)

(i) Re((XY)W) = Re(X(YW)).

APPENDIX 2. THE HOPF FIBERING AND MUTUALLY ISOCLINIC PLANES

At the beginning of § 4, we described how H. Hopf obtained his fibering
of $"~1 by S§"7! over S",n = 2,4, or 8, by intersecting the unit sphere
S$**~1 in R = Q, x Q, with the Q,lines ¥ = CX and X = 0. In
Theorem 5.2, we proved that the Hopf fibering and maximal set of mutually
isoclinic n-planes in R*" are equivalent concepts. Here we prove, directly, the
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THEOREM A2.1. The set of Q,-lines {Y = CX,X =0} in Q, x Q,,
when viewed as n-planes in R*", are mutually isoclinic n-planes.

Proof. We shall prove the theorem for the case n = 8 only. The proof
for the cases n = 2, 4 follows the same line and is simpler.

Some preliminaries are necessary. Suppose that under the identification
of Qg x Qg with R!® as in Theorem 5.1, the elements (X,Y), (X, Y
of Qg x Qg become the vectors (X, Y), (X', Y') in R'® with respectively
the components (x;, ..., X;¢), (X7, ..., X1¢). Then it can easily be verified that
the inner product of the two vectors (X, Y) and (X', Y’) is

P

6
<(X,Y),(X,Y)> = ) xx; = Re(XX*+YY'¥).
i=1
It follows from this that the length of the vector (X, Y) is
(X, Y)] = <(X,Y),(X, V)>"? = (XX*4+YY*2

and that the two vectors (X, Y) and (X', Y') are orthogonal if and only if
Re (XX*+YY'™) = Q.

We can now prove our theorem by showing that in R!® the 8-plane
A:Y = AX is isoclinic with the 8-planes B: Y = BX and O': X = 0.

Let (T, BT)e B be the projection of any nonzero vector (X, AX)e A
on B. Then the vector (X—T, AX—BT) is orthogonal to B, ie, it is
orthogonal to all the vectors (W, BW) e B, where W is an arbitrary Cayley
number. Therefore,

(A.1) Re{(X—-T)W* + (AX—BT)BW)*} =0 forall WeQs.

Since, by (4) (i) and (7) (ii1) in Appendix 1, the terms inside the brackets
inRe { }arecommutative and associative, the left-hand side of (A.1) is equal to

Re {(X —T)W* + [(AX —BT)W*]B*}
= Re {(X—T)W* + [B¥(AX —BT)]W*}
= Re {(X—T)W* + [(B¥*4)X — (B*B)T]W*}
= Re {[X—T+(B*4A)X —(B*B)T]W*} .
Therefore, by (4) (iii) in Appendix 1, condition (A.1) implies that
X — T+ (B¥A)X — (B*B)T =0,
and hence

(A.2) T = (1+B*A)X/(1+B*B).
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S
I

Now, the squared length of the vector (X, AX) is

(X, AX)|? = XX* + (AX) (AX)*
— XX* + AA*XX*,

1.e.,
(A.3) | (X, AX)|? = (1+A*A)XX*.
Similarly,
|(T,BT)|* = (1+B*B)TT*.
But by (A.2),
TT* = (14+B*A)X[(1+ B*4)X]*/(1+ B*B)?
= (1+B*A) (1+ A*B)XX*/(1+ B*B)*.
Therefore,
(A.4) |(T,BT)|? = (1+B*A) (1+ A*B)XX*/(14+ B*B).

Hence, it follows from (A.3) and (A.4) that the angle 0 between the vector
(X, AX) € A and its projection on B 1s given by
20 — | (T, BT)|? ~ (1+4*B)(1+B*4)
SV T, AX) 2 T (1+4%A) (1+B*B)’

which shows that the angle between any nonzero vector (X, AX) € A and its
projection on B is independent of the choice of X ; that is, the 8-plane A is
isoclinic with the 8-plane B.

Finally, to show that the 8-plane A: Y = AX is isoclinic with the 8-plane
O': X = 0, we need only observe that the projection of the nonzero vector
(X, AX) e A on O* is the vector (0, AX), and

1(0, AX)|2 (AX)(AX)* A4

(X, AX)|?>  (1+A*AXX* 1+ AA*

1s independent of X.
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