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If R is a field, then w:deg(J) > R is a “weight function”.
o1

So the corresponding figure is of the form
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FIGURE 3.

2. THE DIVISION ALGORITHM
Let F be a finite subset of R[LX] — {0}.

2.1. Definition. An “admissible combination of F” is an expression of the
form L: = > ¢y, P)X"P, c(y, P) € R, such that

veN", PeF
deg (L) = max {deg(X"P) | c(y, P) # 0} .

Example. Let P,Qe R[X] and let o, p e N". Then X*P — XPQ is an
admissible combination of {P, Q} iff X*-in(P) # X®-in(Q).

Remark. For every Q € <in(F)> there is an admissible combination L
of F such that in(L) = in(Q). L can be calculated in the following way:

Let F': = {PeF|deg(Q) — deg(P)e N"}. Then
Qe <in(F)> and Ic(Q)eg<lc(P)|PeF > .
For P € F’ we calculate elements ¢(P) € R such that Ic(Q) = }: c(P) lc (P).
Bet L: = » e{Ppx s@—e=fip, -

PeF’
Example: F:={5X, + 1,3X,+2}, Q:=X1X3.
Then L = — X, X3(5X,+1) + 2X2X2(3X,+2).
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22. PROPOSITION. Every Qe R[X] — {0} may be writtenas Q = L + 0
with the following properties : <

If in(Q)¢ <in(F)>, then L =0 and Q = Q.
If in(Q)e <in(F)>, then L is an admissible combination of F with
in(L) = in(Q), and either Q = 0 or in(Q)¢ <in(F)>.

L and Q can be found in a finite number of steps by the following
algorithm :

Qo:=0Q;

For k € N assume that Q, has already been defined. If in (Q;) € <in (F)>,
we define Q,,,: = Q. — L;, where L, is an admissible combination of F
with in (L,) = 1n (Qy).

k—1 _
IfQ, = 0orin(Q,) ¢ <in(F)>,then L: = ), L;and Q: = Q.
=0

Proof. We only have to show that there is a number k€ N such that
in(Q,) ¢ <in(F)> or Q, = 0.

If in (Q;) € <in(F)>, then deg(Q;) > deg(Q;,), so the assertion follows
from the lemma 1.3.

2.3. Definition. The algorithm above is called “division by F”, the poly-
nomial Q (or, more precisely, QF) is “a rest of Q after division by F”.

Remarks.

1) Even if the strict ordering < is fixed, O depends on the choice of the

LJs in the algorithm. Hence Q is in general not uniquely determined by Q
and F.

2) If a rest of Q after division by F is zero, then Q belongs to the ideal

generated by F. In general the inverse is not true.

2.4. Example. Consider the graded lexicographic ordering and
P :=2X1+X,X,, P,:=3X3+X,€Z[X,X,].
Let F be {P;, P} and let Q: =2X37X3 + X,X,. Then Q, = Q.
Ly: = 2X3X,P, — 2X,X3P,,
Q,:=00— Ly = —2X1X5+2X1X, + X, X,.
Li:= —2X32X3P, + 2X5P,,
Q,: =0, —L; = —2X,X; +2X1X, + 2X3X% + X,X,.
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Now in(Q,) ¢ <in(F)>, therefore Q = L, + L, + 0, .

See figure 4.
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FIGURE 4.

But if we choose Ly: = X, X3P, , then

Q1:=Qo— Ly = _X%X;f‘*‘Xle,
0y:=0y—L) = - X, X3+ X3}X3+ X,X,,

therefore Q = Ly + L + Q5.

So @, and Q/, are rests of Q after division by F and Q, # Q.

2.5. PROPOSITION. Let J be anideal in R[X] containing F. Then the
following conditions are equivalent :

(1) F is a Grobner basis of J.
(2) For every QelJ, each rest of Q
(3) For every QelJ, a rest of Q

after division by F is zero.

after division by F is zero.

Proof.
(1) = (2): Division of Q € J by F yields Q = L + Q with Q = 0 or in(Q)
¢ <in(F)>.Now Le J and Q € J imply Q € J. Since <in(J)> = <in(F)>,
O must be zero.
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(2) = (3): trivial
(3) = (1): By (3) we have in(Q) e <in(F)> for every Q € J — {0}. Hence
<in(J)> = <in(F)>.
2.6, COROLLARY. Let F be a Grobner basis of an ideal J < R[X].
1) F generates J.
2) Let QeR[X]. Then QeJ iff arest of Q after dividing by F

IS zero.

Proof. Obvious.

2.7. Another caracterisation of GrOobner bases can be given as follows:

We shall say that a set {L,|a e Z(F)} of admissible combinations of F
(with pairwise different degrees) is an “F-admissible set”, if for all o we have
deg(L,) = o and lc(L,) generates the ideal

r<lc(P)| Pe <in(F)>,deg(P) = a> .

Any F-admissible set is R-linearly independent.
If R is a field the condition on lIc(L,) is superfluous.

PROPOSITION. Let J be an ideal in R[X] containing F. Then the
following conditions are equivalent :

(1) F is a Grébner basis of J.
(2) There is an F-admissible set which is a R-basis of J.
(3) Every F-admissible set is a R-basis of J.

Proof. Let {L,| o€ 2(F)} be a F-admissible set.

(1)=(3): Let Q be an element of J — {0}. Division of Q by {Lgego}»
of its rest Q by {Lgegq)}, - yields in a finite number of steps an expression
of Q as R-linear combination of L’s.

(3) = (2): trivial.

(2) = (1): Suppose that {L,|oe€P(F)} is a R-basis of J. For every
Qe J — {0} the initial term of L.y, divides in (Q), hence in (Q) € <in (F)>.

3. CONSTRUCTION OF GROBNER BASES

3.1.  Definition. Let P, Q be elements of R[X],let o, B € N" and let a, b € R.
Then the polynomial
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