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If P is a field, then w : deg (J) -> P is a "weight function".
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So the corresponding figure is of the form
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Figure 3.

2. The Division Algorithm

Let F be a finite subset of P[X] — {0}.

2.1. Definition. An "admissible combination of F" is an expression of the

form L : £ c(y, P)XJP, c(y, P) g P, such that
yeN", PeF

deg (L) max {deg (XyP) | c(y, P) # 0}

Example. Let P, Qe P[AT] and let a, ß g N". Then X°P — Xpg is an
admissible combination of {P, g} iff Xa • in (P) ^ Xp • in (g).

Remark. For every g g <in(P)> there is an admissible combination L
of F such that in(L) in(g). L can be calculated in the following way:

Let F': {P e F \ deg (g) — deg (P) g N"}. Then

Q g <in(F')> and lc(g) g ä<1c(P) | P g F'>

For P g F' we calculate elements c(P) g P such that le (g) £ c(P) le (P).
PeF'

Set L : X c(P)Adeg(Q)-deg(P)P.
PeF'

Example: P: {5A, + 1, 3AT2 + 2}, Q: XfXi.
Then L - XxX 1(5X^1) + 2X i(3X2 + 2).
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2.2. Proposition. Every Q, e — {0} may be written as

with the following properties :

If in (Q) i<in (F)>, then L0 and

If in (Q) e <in(F)>, then L is an admissible combination of F with

in (L) in (2), and either 2 0 or in (2) ^ < in CO >

L and Q can be found in a finite number of steps by the following

algorithm :

20: Ö;

For fee N assume that Qk has already been defined. If in (2*;) e < in (F) >,
we define 2t+i ' Qk ~Lk,whereLk is an admissible combination of F

with in (Lj) m{Qk).
k~ 1 _

If Qk 0 or in(Qh)£ <in(F)>, then L: £ Lj and Q : Qk.
j o

Proof. We only have to show that there is a number k e N such that
in {Qu) $ < in {F) > or Qk 0.

If m{Qj) e <in (F) >, then deg(ß7) > deg(QJ+1), so the assertion follows

from the lemma 1.3.

2.3. Definition. The algorithm above is called "division by F\ the
polynomial <2 (or, more precisely, QF) is "a rest of Q after division by F\

Remarks.

1) Even if the strict ordering < is fixed, Q depends on the choice of the

Lk s in the algorithm. Hence Q is in general not uniquely determined by Q

and F.

2) If a rest of Q after division by F is zero, then Q belongs to the ideal

generated by F. In general the inverse is not true.

2.4. Example. Consider the graded lexicographic ordering and

Px: 2X1 + P2 : « 3XÏ + Xx eZ[I1?I2]
Let F be {P1, P2} and let Q : 2X\X\ + XxX2. Then Q0 Q.

L0 : 1X\X2P2 - 2X,XlPl9
Qi - Qo - Lo - 2XfX42 + 2X\X2 + XxX2

Ly \ — 2X\X\P2 + 2X\Pl9
Qi-2i - O - I + 2X?Y2 + \ + A-^2
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Now in(ß2) i <in(F)>, therefore Q L0 + + Q2

See figure 4.
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Figure 4.

But if we choose L'0 : XxX2Pi, then

Qi : Qo - L'o - X\X\ + X1X2

Li;= - + XfP,
Ô2Ï ßi - Li - X±X\ + X\X\ + XxX2f

therefore Q L'0 + + Ö2 •

So Q2 and Q'2 are rests of Q after division by F and g2 ^ Q'2.

2.5. Proposition. Let J be an ideal in P[X] containing F. TTien the

following conditions are equivalent :

(1) F is a Gröbner basis of J.

(2) For every Qe J, each rest of Q after division by F is zero.

(3) For every Qe J, a rest of Q after division by F is zero.

Proof.

(1) => (2): Division of Q e J by F yields Q L + Q with Q 0 or in(ß)
< in (F) >. Now Le J and Qe J imply Qe J. Since < in (J) > <in(F)>,

Q must be zero.
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(2) => (3) : trivial.

(3) => (1): By (3) we have in(0g <in(F)> for every QeJ - {0}. Hence

<in(J)> <in(F)>.

2.6. Corollary. Let F be a Gröbner basis of an ideal J ^ R[2Q.

1) F generates J.

2) Let Q g R[Xf Then QeJ iff a rest of Q after dividing by F
is zero.

Proof Obvious.

2.7. Another caracterisation of Gröbner bases can be given as follows:

We shall say that a set {La | a g @(F)} of admissible combinations of F
(with pairwise different degrees) is an "inadmissible set", if for all a we have

deg (LJ a and le (La) generates the ideal

R<lc(P) I P e <in(F)>, deg(P) a>

Any F-admissible set is R-linearly independent.
If R is a field the condition on lc (La) is superfluous.

Proposition. Let J be an ideal in R[X] containing F. Then the

following conditions are equivalent :

(1) F is a Gröbner basis of J.

(2) There is an F-admissible set which is a R-basis of J.

(3) Every F-admissible set is a R-basis of J.

Proof Let {La | a g @(F)} be a F-admissible set.

(1) (3): Let Q be an element of J - {0}. Division of Q by {Ldeg(ô)},
of its rest Q by {Ldeg(Q)}>... yields in a finite number of steps an expression
of Q as R-linear combination of La's.

(3) => (2) : trivial.

(2) => (1) : Suppose that {La | a e @(F)} is a R-basis of J. For every
Q g J - {0} the initial term of Ldeg(Q) divides in(g), hence in(Q) g <in(JP)>.

3. Construction of Gröbner Bases

3.1. Definition. Let P, Q be elements of R[X], let a, ß g N" and let a,beR.
Then the polynomial
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