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G. WANNER

EXERCICES

(Descartes 1639). Montrer que, pour la deuxiéme courbe de Debeaune,
le segment de la droite y = x + a coupé par ’horizontale et la tangente
de chaque point B est toujours de longueur a}/2 (voir fig. 2).

Calculer par la méthode de Newton la solution de I’équation différentielle
(1) pour la condition initiale y(0) = 1.
Résultat:

1 1
y:1+2x+x3+1x4+2x5,&c.

Appliquer au premier probleme de Debeaune

a) la méthode de Newton,

b) la séparation des variables suivie d’une quadrature,
¢) la méthode de Leibniz (formule (4)).

On trouve alors la série de Taylor pour e* et la formule

. x\"
e* = hm<1+—> )
n—-)w n

Expliquer la signification des lignes dessinées a la figure 10 concernant
la solution de la tractrice. Calculer 1’intégrale (14) en utilisant la
substitution a? — y? = v2.

La caténaire renversée est-elle la forme idéale pour un arc portant un
pont?

Calculer I’intégrale (25) pour m = 1 et montrer que la solution est un
cercle.

(Johann Bernoulli 1697). Transformer I’équation de Bernoulli (15) en une
1

équation linéaire en posant y = v!-7.

(Le pendule isochrone). La force tangentielle d’un corps soumis a la
pesanteur et glissant sur une courbe est

4
J1 + p?

ou p = y’. On cherche une courbe pour laquelle cette force est propor-
tionnelle a I’arc s, donc on veut que

mg - sin o = myg




(26)

10.

11.
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p
JT+p%

En conséquence, le mouvement du corps est une oscillation purement
harmonique et la période indépendante de I’amplitude. Trouver la

solution.
l/ 2
l_‘i‘_l . dy.

On tombe sur I’équation (17) («animo revolvens inexpectatam illam iden-
titatem Tautochronae Hugeniae nostrae que Brachystochronae» (Johann
Bernoulli)).

§ =C

Indication: Dériver (26) (comme en (8)) et utiliser ds =

«Dieses ist von Christian Huygens ersonnen, dem genialsten Uhrmacher
aller Zeiten» (Horologium Oscillatorium, Paris 1673).

(A. Sommerfeld, Vorlesungen iiber theoretische Physik, Band I).

On cherche une courbe de longueur L pour laquelle le centre de gravité
est le plus bas possible, i.e.

b
jy 1 4+ y'?dx = min!

L
(,/1 +y’2 —b—_7>dx =0.

Montrer que la «Solutio huius Quaestionis esse curvam Catenariam»
(Euler [11], Cap. V, §73).

b
sous condition J

a

Obtenir I’équation de la brachystochrone (17) en se basant sur I’équation
d’Euler (21).

Montrer que la solution du probléme isopérimétrique (25), pour m — oo ,
converge vers un triangle.
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