Zeitschrift: L'Enseignement Mathématique
Herausgeber: Commission Internationale de I'Enseignement Mathématique

Band: 34 (1988)

Heft: 1-2: L'ENSEIGNEMENT MATHEMATIQUE

Artikel: UNE THEORIE DE DENJOY DES MARTINGALES DYADIQUES
Autor: Kahane, Jean-Pierre

DOl: https://doi.org/10.5169/seals-56598

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 28.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-56598
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

L’Enseignement Mathématique, t. 34 (1988), p. 255-268

UNE THEORIE DE DENJOY DES MARTINGALES DYADIQUES

par Jean-Pierre KAHANE

En 1912, dans deux notes aux Comptes-Rendus, Arnaud Denjoy créait la
totalisation comme procédé permettant de calculer la primitive de toute
fonction dérivée. Ce procédé mariait trois théories: les ordinaux de Cantor,
Iintégration de Lebesgue, la topologie de Baire. Modifi¢, il allait permettre
a Denjoy la résolution d’un autre probléme, inspiré par Riemann et Cantor,
le calcul des coefficients d’une série trigonométrique partout convergente a
partir de sa somme. L’exposé des totalisations de Denjoy est répute difficile.
Lui-méme y a consacre d’'importants articles et de gros ouvrages. Mon but
est de donner un expos¢ complet d’une totalisation simplifiée, permettant le
calcul des primitives, dans le cadre qui me parait le mieux adapté: celui des
martingales dyadiques partout convergentes ou, de maniere équivalente, celui
des dérivees dyadiques. Fexposerai le probleme, puis la solution. Quelques
commentaires suivront. Dans un appendice je caractériserai la distribution
des deérivées dyadiques, et je terminerai par quelques citations et un pastiche.

LE PROBLEME

Posons X = {0,1}N". Un élément x de X est une suite (x,, X,,..)
a valeurs 0 ou 1. Une martingale dyadique est une suite de fonctions f,
définies sur X (neN), a valeurs réelles, et vérifiant les conditions suivantes:

1. fo est une constante et f,(x) ne dépend que de x,,x,,..x,; on
écrira (abus véniel)

(1) fn(X) = fn(xlaxza"'a xn)

2. Pour tout n et tout (x,, x,, ..., X,

(2) f;:(xlaxza“'> Xn) = (f;1+l(xl’x23"" xn70)+f;1+1(x19x25'"7 xnnl))'

N[ =
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Nous considérons des martingales dyadiques partout convergentes, donc

(3) f(x) = lim f,(x)

n— o

existe pour tout x € X. Notre but est de calculer la valeur moyenne de
la martingale (c’est la valeur moyenne de f,, indépendante de n), soit

1
4) fo = §(f1(0)+f1(1)) = M(f,) = 2—"an(xl,x2,..., Xu)

a partir de la fonction f(x).
La situation peut encore se décrire ainsi. On considere sur l'intervalle
fermé I = [0, 1] une fonction réelle F. On pose

fo = F(1) — F(0)

et généralement

X4 X, 1 X, %,
=2F|l—+.+—+=)—F|—+ .. +=1)1};
fn(xln ,Xn) < (2 + + 2;1 + 2n> (2 + + 2n>>

c’est la pente de la corde du graphe de F au-dessus de I'intervalle dyadique

ST S
SRR T

(Cest ce que nous appellerons une « corde dyadique »). Toute martingale
dyadique peut s’obtenir de cette fagon. Si la fonction F est partout dérivable,
la martingale est partout convergente, avec pour limite

(5) flx) = F <§: xj-2"j>.

Le calcul de f, a partir de f est bien une totalisation de la dérivée F’
sur l'intervalle [0, 1]. Réciproquement, si la martingale est partout conver-
gente, on peut dire que F est « dérivable au sens dyadique »; cela signifie,
pour tout point t € [0, 1] non dyadique, que les pentes des cordes dyadiques
au-dessus de t tendent vers une limite, la « dérivée dyadique », et qu’en tout
point ¢ € [0, 1] dyadique, les pentes des cordes dyadiques ayant leur extrémité
droite resp. gauche au-dessus de ¢t tendent vers une limite, la « dérivée
dyadique gauche » resp. « droite ». En posant, quand ¢ n’est pas dyadique

(6) (=Y x27

et, quand t est dyadique
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t+0=>x;-277 (x; = 0 pourj grand)
1

(7)
t—0 = ij-z—f (x; = 1 pour j grand),
1

les expressions F'(t), F'(t+0), F'(t—0) données par (5) sont les dérivees
dyadiques (resp. droite, resp. gauche). Notre probléme, un peu plus général
que celui de Denjoy, consiste a calculer une fonction F a partir de ses
dérivées dyadiques, supposées exister en tout point.

Restreignons F a I’ensemble des nombres dyadiques (les autres n’inter-
viennent pas dans la définition des dérivées dyadiques) et observons que si I
a ses dérivées dyadiques partout > 0, F est strictement croissante. C’est
un analogue du théoréme de Rolle qui s’établit aisement par dichotomie:
s’il existait une corde dyadique a pente < 0, il existerait une suite de telles
cordes au-dessus d’intervalles dyadiques emboités décroissants, donc une
derivée dyadique < 0. La premicre conséquence est le théoréme d’unicité:
si f = 0, F est une constante, donc f, = 0. Voici une seconde conséquence.

LEMME. Si a< f <P, ona a< f, <P pourtout n.

F(t) — F(s
Preuve. ag%ig B.
—§

LA SOLUTION: TOTALISATION DYADIQUE

Revenons a X. Cest un espace probabilisé, avec la probabilité naturelle
(@ savoir I'image réciproque de la mesure de Lebesgue sur [0, 1] par

Papplication x — t vue en (6)). C’est aussi un espace topologique, engendré
par les ouverts-fermés

Cler, €5, 8) = {XiX] = 81,X) = €5, ., X, = &)

que nous appelons cellules d’ordre n(neN), et il a la propriété de Baire:
st X est la limite d’une suite croissante de fermés, ces fermés, a partir

d’'un certain rang, contiennent une cellule. Comme les f, sont des fonctions
continues, les ensembles

E,={x: sup |f,(x)— f,(x)]<1}

nzZm,p=m

sont des fermés. Comme les f, convergent en tout point, la réunion des
E, est X. D’apres la propriété de Baire, les E,,, a partir d’'un certain rang,
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contiennent une cellule. En conclusion, il existe des cellules sur lesquelles
la fonction f est bornée. Soit C une telle cellule, d’ordre minimum.

S1 C = X, le lemme montre que les f, sont bornées. Le théoreme de
Lebesgue s’applique et donne

Jo = J Ja(x)dx = J JX)dx = M« (f)

(dx représente I’élément de mesure de probabilité, et .#, la moyenne sur
X). Le probléme est alors résolu. La totalisation s’arréte a la premiére
étape.

En général, la martingale f,, restreinte @ C et a des valeurs de n assez
grandes (supérieures a 'ordre de C) définit une nouvelle martingale dyadique,
dont la valeur moyenne est

(O = dc(fy) = Mc(f) ("27’(@)

(A - représentant la moyenne sur C et n(C) I'ordre de C), parce que les
f, sont bornées sur C et convergent vers f. Formellement, la martingale
dyadique f, restreinte a C = C(gq, €,, ... § ) est la martingale

gm(y19 y2> ym) = fm+k(819 82? e 8 Vis Y25 - ym) (meNa yEX)

et la moyenne sur C est 'intégrale par rapport a dy.

Si C # X, on répéte argument ci-dessus en remplagant X par X\C.
On obtient une nouvelle cellule d’ordre minimum, C?, disjointe de C, sur
laquelle la fonction f est bornée. Remarquons que C + C? # X (sinon,
I'ordre de C ne serait pas minimal). On peut donc poursuivre: posant
C! = C, on définit une suite infinie de cellules disjointes C!, C?, .., C* ...
d’ordres croissants (chacune, a son étape, d’ordre minimum) telles que f
est bornée sur chaque C* Posons f° = f. Remplagons f sur C! par sa
moyenne f(C?!), puis sur C?> par sa moyenne f(C?), et ainsi de suite:
on obtient une suite f!, £ .., f% .. telle quon passe de f*°' a f* en
prenant pour nouvelle valeur sur C* la moyenne f*~(C". La k-iéme étape
de la totalisation consiste précisément a déterminer C* et a calculer f*.
Remarquons que f* est la limite de la martingale f*(n=0, 1, ...) obtenue en
arrétant la martingale f,, sur chaque C/(j<k), au temps n(C’).

Posons maintenant

Go=YCk, f°=lim f*

1 k— o0

L’étape d’ordre @ (premier ordinal infini) consiste a déterminer G® et f°.
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Remarquons que G est dense dans X, que G® # X, et que les C*
sont les cellules maximales contenues dans G® (il est bon de noter que,
si une cellule admet une partition en cellules, cette partition est finie).
Posons K® = X\G®. Ainsi f® = f sur K“.

Remarquons aussi que f© est la limite de la martingale dyadique
f© qui sobtient en remplagant f,(x) par f(C¥ quand x e C* et n = n(C").

Létape d’ordre @ + 1 consiste a répéter pour f® et K® ce que nous
avons fait au départ pour f et X. On considere les fermés

Ep = {x: sup |fpx)— fRax)]<1}.

nzm,pz2m

Suivant Baire, il existe un entier m et une cellule C tels que
O #CnK®< ESnK”.

La différence C\C n K® est une somme infinie de C* (les cellules maximales
contenues dans C n G®), disons

C\CnK*= > C", A =ACK.
keA
Pour chaque k € A, la cellule mére de C* (C’est-a-dire d’ordre immédiatement
inférieur et contenant C¥) rencontre K®; sinon, elle aurait d( étre choisie
comme C7,j < k. Désignons par D* la cellule sceur de C*; remarquons
quelle est contenue dans C, donc

Q # D*NK® < E©nK®.

Choisissons n = n(C¥): alors f? est constant sur C* (égal a f(C%), f¢
est constant sur D¥, et f©_, est constant sur C*¥ + D* égal a la moyenne
des deux valeurs précédentes. Si ke A et k est assez grand, a savoir
n = n(Cy) > m, choisissons x € D¥ n K®. Comme x € E© on a

| f2(x) = fo <1
| fa-100) — fo(x) | < 1

et par conséquent

| f(C) — o)1 < 3.

Or f© est borné sur C n K°. Donc f° est uniformément borné sur les
CXkeA). En définitive, f© est borné sur C.
On choisit pour C°"' une cellule maximale, intersectant K®, ou f©

est borné, et on considére la moyenne f°(C®*1!). Cest Iétape d’ordre
o+ 1.
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Si C**! = X, on a terminé. Sinon, on peut poursuivre, et définir une
suite de cellules d’ordres croissants C®*2, C®*3, C®** .. (chacune, 4 son étape,
étant d’ordre minimum) telles que f est bornée sur chaque C°** On
désigne par f°(C°*% la valeur moyenne de f® sur C°*k L’étape d’ordre
® + k consiste a définir C°** et a calculer f%C®*%. Les cellules
C°*Mk=0, 1,..) sont disjointes, leur réunion G?**® est dense dans X et
K?* = X\G?® est un compact non vide. En remplacant f® par f°(C®*¥
sur chaque C®** on obtient une nouvelle fonction f2®, qui est encore limite
de martingale dyadique, transformée de la martingale initiale par un dispositif
d’arrét. Cest I’étape d’ordre 2.

L’étape d’ordre 2w + 1 considére f2® et K?®. Si f?® est bornée sur
K?® (c’est-a-dire si f est bornée sur K?°, puisque f = f© = f2® sur
K?®), f2® est bornée sur X et son intégration fournit f,: la totalisation
sarrete a cette €tape. Sinon, on va comme ci-dessus jusqu’a I’étape 3o,
ou se trouvent définis un compact K3® strictement inclus dans K?¢, et
une fonction f>°, limite de martingale dyadique.

Si f3“ est bornée sur K3“ elle est bornée partout, son intégration
fournit f,, la totalisation s’arréte a I’étape 3. Sinon, elle se poursuit
jusqu’a I’étape 4w, et ainsi de suite.

Si la totalisation ne s’arréte pas avant I’étape ®?, les compacts K<,
K?®, K3° .. ont une intersection non vide, K**, et les fonctions f®, £2¢, 3, ...
ont une limite f°°, égale a f sur K®°, constante sur les cellules maximales
contenues dans le complémentaire de K®°, et limite d’une martingale trans-
formée par arrét de la martingale initiale. La totalisation s’arréte a I’étape
®? si f est bornée sur K, et se poursuit sinon jusqu’a l'étape ®? + o
au moins.

De facon générale, si o est un ordinal limite avant lequel la totalisation
se poursuit, K* est la limite décroissante des KP, B < o, et f* est égale & f
sur K* et limite de la martingale initiale convenablement arrétée. La tota-
lisation s’arréte si f est bornée sur K% donc f* bornée partout. Elle se
poursuit sinon jusqu’a o + ® au moins, par le procédé de construction des
K**k et f**F qui se trouve détaillé plus haut lorsque o = o.

La chaine des K* est strictement décroissante, puisque le passage de
K* a K**1 consiste a supprimer une portion dyadique de K* (intersection
de K* avec une cellule convenable). Comme il n’y a qu'une infinit¢ dénom-
brable de cellules, la chaine s’arréte a un ordinal dénombrable, ou la totali-
sation est achevee.
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COMMENTAIRES

1. 1l existe une autre structure intéressante de X, celle du groupe
abélien. Les caractéres coordonnés sont les « fonctions de Rademacher »
r(x) = (—1)™*(k=1,2,..). Les caractéres généraux sont les « fonctions de
Walsh » w,(n=0, 1, ...) ainsi définies

w, = [[rix<n =) a2

(4 = 0 ou 1, Y somme finie, [| produit fini). Une «série de Fourier-
Walsh » est de la forme

S aw,(x).
n=0

Les sommes partielles d’ordre 2% (de la forme ) ) d’une telle série forment
0<n<2k

une martingale dyadique. Si la série est partout convergente, la totalisation
que nous venons de décrire permet de calculer a partir de la somme le
premier coefficient, a,, et de méme (en totalisant sur des cellules au lieu
de X entier) les autres coefficients. Ainsi, sur ce modéle dyadique, le calcul
des coefficients d’une série trigonométrique (remplacée par une serie de
Fourier-Walsh) apparait trés naturel. Naturellement, le cas trigonométrique
ordinaire requiert beaucoup plus de travail.

2. Dans la théorie ordinaire des martingales, on ne se soucie pas des
ensembles de mesure nulle. Ici, il est essentiel que la martingale converge
partout sur X. D’une martingale convergeant partout sauf en un point, on ne
saurait rien dire.

3. Dans la théorie ordinaire des martingales, s’il y a convergence dans
L', la valeur initiale est I'intégrale de la fonction limite, et ne dépend donc
que de la distribution de la fonction limite. D’ailleurs, la distribution de la
fonction limite peut €tre n'importe quelle distribution p sur R, pourvu que

I'intégrale JI y|dw(y) soit finie. (On choisit arbitrairement une fonction

ayant cette distribution; ses espérances conditionnelles relativement aux
tribus .77, engendrées par les cellules d’ordre n convergent vers elle presque
partout et dans L'). Ici, il apparait deux cas. Si la limite (partout) est
intégrable, la valeur initiale est I'intégrale de la limite, et ne dépend donc
que de sa distribution. Sinon, la valeur initiale est la totale de la limite,
et elle n’est pas du tout déterminée par sa distribution. Il est naturel de

chercher ce qu’on peut dire de la distribution de la fonction limite. C’est
Pobjet de I'appendice.
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4. Dans la totalisation dyadique apparait une chaine de compacts non-
denses K* strictement décroissants. Limitons-nous aux ordinaux limites

(a=w, 20, 30, ... ®*, O*+, ...),
que nous écrivons
o =P (B=1,2,3 .0 0+1,.).

La différence KP*V*\KP® est un ensemble infini. Inversement, étant donné
une chaine (dénombrable) P de compacts non-denses de X, décroissants
vers (D, et telle que A P\A P! est infini pour tout B, on voit comment
construire une chaine K* telle que KP® = 4P, telle que les K* soient des
compacts non-denses, et qu’on passe de K* a K*™! par ablation d’une portion
dyadique. On voit encore, les K* étant ainsi choisis, comment construire des
f? tels que chaque f* soit constante sur les cellules maximales disjointes
de K% non bornée au voisinage de chaque point de K**! et bornée au
voisinage de K*\K®*!, avec la propriété que la moyenne de f* sur la
cellule minimale C* contenant K*\K**! vaut f**! (constante sur C%. Ainsi,
en remontant la chaine, on peut reconstituer la fonction f = f° telle que,
dans la totalisation, on trouve a létape d’ordre o le compact K* et la
fonction f*.

5. Voici quelques références. Les travaux de Denjoy débutent avec deux
notes aux Comptes-Rendus [1], [2], qui exposent rapidement la totalisation
qu’il appellera plus tard « simple », et son usage pour le calcul des primitives.
La totalisation dyadique ici introduite differe de la totalisation simple de
Denjoy en ce qu’elle considere uniquement des intervalles dyadiques (au
lieu d’intervalles quelconques) et des fonctions bornées (au lieu de fonctions
intégrables au sens de Lebesgue). L’exposé le plus complet de la totalisation
simple et des autres totalisations de Denjoy se trouve dans le monumental
ouvrage [3], dont les chapitres VII et VIII (pp. 327-481) sont consacrés aux
totalisations, et le chapitre IX (pp. 483-595) a lapplication aux séries
trigonomeétriques.

La totalisation simple est un cas particulier de '« intégrale de Riemann
généralisée » de R. Henstock ([4], chap. 10). D’apres Pacquement [5],
I'intégrale de Henstock permet l'intégration des dérivées dyadiques, au sens
différent par P. Butzer et ses collaborateurs). Voir également les travaux de
V. A. Skvorcov, qui méritent une particuliere attention [6], [7], [8], [9].
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APPENDICE: DISTRIBUTION DE LA FONCTION f

THEOREME. Pour quune mesure positive @ sur R soit la distribution
dune limite de martingale dyadique partout convergente (au sens de (3)) il
faut et il suffit que l'on ait

(8) J |y 1 du(y) < oo

ou

9) J_lyldu(y)=j yd(y) = oo.

Preuve. Nous identifierons X et lintervalle [0, 1] de R ou les points
dyadiques autres que 0 et 1 sont dédoublés (voir (6) et (7)). Ainsi, une fonction
continue sur X est une fonction continue sur [0, 1]\D (D est I'ensemble des
points dyadiques) admettant des limites en O et en 1, et, en tout point de D
autre que 0 et 1, une limite a droite et une limite a gauche. Considérons
des cas de difficulté croissante

a) W est portée par un intervalle [a, b] et charge tout sous-intervalle de
[a, b]. Soit f la fonction croissante sur [0, 1] dont la distribution est p.
Comme f est continue sur [0, 1], les espérances conditionnelles f, = E(f/7,)
(7, est la n-ieme tribu dyadique) convergent uniformément vers f.

b) p est portée par un intervalle [a, b], et la fonction de répartition
Wy) = pW(—oo, y) est dyadique sur les paliers (intervalles de constance) P,,.
Elle est donc strictement croissante sur [a, b]\u P, et applique cet ensemble
dans [0, 1]\uU {p,}, ou p,e D. La fonction réciproque se prolonge en une
fonction continue f sur X, et les espérances conditionnelles f, convergent
uniformément vers f sur X.

c) w est portée par un intervalle [a, b], et la fonction de répartition
i(x) admet un palier unique P entre a et b, ou sa valeur p n’est pas
dyadique. Etant donné & > 0, tel que & < inf(p, 1—p), choisissons p, € D

g
tel que |p; —pl < > et posons p’ = 2p — p,, puis choisissons p, € D tel

/ 8 144 4 2 ¥ : M
que | p, — p'| < 7 et posons p” = 2p" — p,, et ainsi de suite. On obtient

une suite py, p,, ... p,, ... contenue dans D, convergente, telle que

(10) p = an 2*)1
1
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et

(11) |limp, — p| < &.

Désignons par V\, l'application de [0, 1] sur [27" 27 "*1] qui applique
linéairement [0, p] sur [27", 27 "+p,27"] et [p, 1] sur [27"+p,27" 27 ""1],
et deésignons par o, l'application réciproque de V,. Soit g la fonction
croissante sur [0, 1], définie et continue sauf en p, dont la distribution

est p. Chaque fonction g o @, est prolongeable par continuité sur X, et sa
fonction de répartition est \,(p(.)—27"). D’aprés (10) et (11) on a

(12) §4&@L)—2”)=QL)
(13) lim 2", (i) = W(i(.)),

ou \ est l'application de [0, 1] sur lui-méme qui applique linéairement
[0, p] sur [0, lim p, ] et [p, 1] sur [lim p,, 1]. Posons

(14) f=§W%

et remarquons que les supports des g o ¢, constituent une partition de
X\{0}. Daprés (12) la distribution de f est p. Pour m < n lespérance
conditionnelle f,, = E(f/Z ,) est constante sur [27", 27 ""1] et égale a4 la
valeur moyenne de g - ¢,,, qui est

[y d(en) () -

En posant

f(0) = jy d(Yep) (y)

f est limite des f,, en tout point, y compris 0.

d) p est portée par un intervalle [a, b]. Choisissons un dénombrable
dense dans [0, 1], contenant 0, 1, et toutes les valeurs de la fonction de
répartition p(.) sur les paliers; soit A ce dénombrable. Fixons 0 < ¢ < 1.
Ordonnons A en commengant par 0 et 1, de fagon quelconque ensuite, et
définissons par induction suivant cet ordre une fonction 7y, croissante sur A,
appliquant A dans D, telle que v,(0) = 0, y,(1) = 1, et

(15) (1—§>@—q)<vam-nm><(1+§>@—m
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pour tout couple (p, q) d’éléments de A tels que p > g. Soit A’ 'image de A
dans lapplication p — p’ = 2p — v.(p), puis v, une fonction croissante sur
A, appliquant A’ dans D, avec y,(0) = 0, y,(1) = 1, et

(16) <1 — Z) (P’ —q") < v.(p)) — v2d) < (1 + Z) ' —q)

pour tout couple (p/, ¢') d’¢éléments de A’ tels que p’ < ¢/, et ainsi de suite.
Il résulte de (15) (en choisissant g=0), que

lp’—p|=lv1(p)—pi<§

et de (16), en posant p” = 2p" — v,(p'), que

e
l/___ ! <_
|p" — D' 1

et ainsi de suite. A chaque peA correspondent deux suites p™ et
p, = ¥.(p" %), qui convergent vers une méme limite y(p) telle que
| v(p) — p| < € et telle que (10) ait lieu. A partir de la on construit les
fonctions continues Vr, appliquant [0, 1] sur [27" 2""!] de fagon que, pour
chaque pe A,

¥Y,p)=2"+p2°",

les fonctions réciproques @, et la fonction f comme en (14). De nouveau
f est limite d’'une martingale dyadique et f admet p pour distribution.

e) p verifie (8). Quitte a translater p, supposons Jy di(y) = 0. Décom-

posons p €n un€ somme

(17) po= iun,

chaque p, étant a support compact [a,, b, ], avec p,(R) = 27" et

(18) Jy dp,(y) = 0.

A la normalisation prés, I'hypothése d) est vérifiée pour p,. Il existe donc
une fonction f™ portée par [27",27""*], limite de martingale dyadique,
admettant p, pour distribution. Remarquons que la valeur moyenne de f™
est 0. Posons
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(19) f = ilo:f(").

Alors f est limite de martingale dyadique et sa distribution est p.

f) p verifie (9). On la décompose encore sous la forme (17), on définit
les f™ et f par (19). La condition est la méme, et la totale de f,
fo, est nulle. En remplagant 0 par o dans le second membre de (18) ce
qui est possible & cause de I'hypothése (9), on obtient f, = a. Le théoréme
est démontré.

Remarquons que la totalisation de la fonction f nécessite une seule
etape dans les cas a), b), c), d), et quelle est pratiquement terminée a
I'étape o (K® est réduit a {0}) dans les cas e) et f).

Dans le cas f) on peut introduire un « arbre de distribution » permettant
le calcul de f,. I s’agit de larbre des mesures p,, ., qui sont les
distributions de f sur les cellules C(g4, ..., €,). Ainsi

(20) {“81,...,8,1 = Hey, .80, 0 + Bty s oy B 1

uel,...,an(c(glv e gn)) = ual,...,an(X) = 2—n

(n=0,1,..;g=0 ou 1). La condition (20) est nécessaire, mais elle n’est pas
suffisante. La théorie de la totalisation dyadique montre que se trouve
nécessairement dans 'arbre une infinité de mesures a supports compacts;
la premiere €tape de la totalisation consiste a remplacer ces mesures par des
mesures ponctuelles ayant méme masse et méme centre de gravité; dans le
nouvel arbre, on recommence 'opération, et ainsi de suite, transfiniment au
besoin, jusqu’a obtenir un arbre stationnaire. Cet arbre stationnaire décrit
alors la martingale dyadique (au niveau n, on obtient la distribution de
f.). 1l serait intéressant de connaitre la caractérisation des arbres de distri-
butions des limites de martingales dyadiques.

CITATIONS ET PASTICHE

1. Si une part de mon ceuvre mathématique vient a sauver mon nom de
Poubli, sans doute resterai-je ’analyste qui le premier a trouvé les moyens
d’intégrer toute dérivée et de calculer les coefficients de toute série trigo-
nomeétrique convergente de somme donnée.

Arnaud DENJOY

Notice sur les travaux scientifiques,
Paris, Hermann, 1934 (p. 5)
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2. Les théories les plus audacieuses des mathématiques recentes
neffrayaient nullement Painlevé. Il avait une aptitude admirable a les saisir,
malgré toute leur nouveauté, et méme a les résumer avec un bonheur
d’expression auquel 'auteur lui-méme n’aurait pas su atteindre. Quelqu’un
lui exposait un jour, dans une conversation, I’économie d’une méthode
d’intégration, procédant par une infinité d’étapes successives, chacune d’elles
garrétant & un ensemble-barriére, dont ’étape suivante enléve au moins un
morceau. « Oui, tout y passe », répondit Painlevé qui suivait avec une atten-
tion et une lucidité parfaites les explications de son interlocuteur. Ce mot
exprimait d’une fagon merveilleusement compréhensive, et 'impossibilite qu'un
irréductible noyau de résistance a la méthode se constitudt, et I'achevement
nécessaire des opérations au terme accessible d’une chaine de calculs.

Arnaud DENJOY
Hommes, forme et le nombre

Paris, Blanchard, 1964 (p. 87-88)

3. La dérivée dyadique est une forteresse. Elle a été construite, par
des batisseurs géométres, a partir d’'un terre-plein de grande hauteur, suivant
un plan dont on a perdu la trace; on ignore méme la hauteur du terre-plein
de départ. On sait seulement que les batisseurs procédaient par étapes et
selon un systéme: au départ, ils ont divisé le terre-plein en deux parties
egales, porté de la terre d’une partie sur l'autre et nivelé; sur chacun des
niveaux ils ont procédé de méme, et ainsi de suite, construisant ainsi, de
plus en plus hauts, de plus en plus profonds, de plus en plus tourmentes,
des tours et des fossés, des créneaux et des puits, des clochers, des ravins,
un edifice fantastique joignant le ciel et les abimes. Le totalisateur va
démanteler la forteresse, et la ramener au terre-plein de départ. Pour cela, il
sattaque d’abord aux places les plus faibles, aux plages sur lesquelles
le relief est borné et donc facile & niveler. Une fois nivelée chacune de
ces plages, la forteresse est 4 peine entamée. Mais le nivellement qu’on
vient d’opérer fait apparaitre de nouvelles places faibles, que le totalisateur
nivelle a leur tour. Ainsi de proche en proche, autour du cceur encore
inviol¢, des plateaux remplacent les morceaux abattus, s’agrandissant et s’enri-
chissant sans cesse de nouveaux décombres. A chaque étape, de nouveaux
murs s’eécroulent, le cceur de la forteresse se réduit. Mais si les batisseurs
ont et¢ habiles, ni mille ni mille milliards d’étapes ne suffisent a détruire
ce qui reste. Tout l'art du totalisateur est alors de bien employer son temps.
Accélérant son ceuvre, il fait tenir une infinité d’étapes en une heure. L heure
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ecoulée, s’il reste encore a faire il se donne une demi-heure pour une
infinité de nouveaux assauts. Si cela ne suffit pas, encore un quart d’heure
et ainsi de suite. Si, la seconde heure écoulée, quelque chose reste debout,
il presse encore le rythme. Chaque attaque emportant un morceau, s’il les
précipite comme il convient, rien ne résiste, tout y passe, il vient un instant
ou le dernier pan de mur s’effondre, et le nivellement est achevé.
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