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UNE THÉORIE DE DENJOY DES MARTINGALES DYADIQUES

par Jean-Pierre Kahane

En 1912, dans deux notes aux Comptes-Rendus, Arnaud Denjoy créait la

totalisation comme procédé permettant de calculer la primitive de toute
fonction dérivée. Ce procédé mariait trois théories: les ordinaux de Cantor,

l'intégration de Lebesgue, la topologie de Baire. Modifié, il allait permettre
à Denjoy la résolution d'un autre problème, inspiré par Riemann et Cantor,
le calcul des coefficients d'une série trigonométrique partout convergente à

partir de sa somme. L'exposé des totalisations de Denjoy est réputé difficile.
Lui-même y a consacré d'importants articles et de gros ouvrages. Mon but
est de donner un exposé complet d'une totalisation simplifiée, permettant le

calcul des primitives, dans le cadre qui me paraît le mieux adapté: celui des

martingales dyadiques partout convergentes ou, de manière équivalente, celui
des dérivées dyadiques. J'exposerai le problème, puis la solution. Quelques
commentaires suivront. Dans un appendice je caractériserai la distribution
des dérivées dyadiques, et je terminerai par quelques citations et un pastiche.

Le problème

Posons X {0, 1}N + Un élément x de I est une suite (x1,x2,...)
à valeurs 0 ou 1. Une martingale dyadique est une suite de fonctions fn
définies sur X {neN), à valeurs réelles, et vérifiant les conditions suivantes:

1. /0 est une constante et fn(x) ne dépend que de x1,x2,-xn; on
écrira (abus véniel)

fnix) f„{x1,X2,...,X„)

2. Pour tout n et tout {xl, x2,..., xn)

(2) f„{x 1 x2 Xn) —
2

{fn+l(Xl > •••> xn> 0) + /„+l(*l4 X2, Xn9 1))
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Nous considérons des martingales dyadiques partout convergentes, donc

(3) f(x) lim fn(x)
n~> oo

existe pour tout x e X. Notre but est de calculer la valeur moyenne de

la martingale (c'est la valeur moyenne de /„, indépendante de ri), soit

(4) /o - \{A(0) + m) 2-"E/„(x

à partir de la fonction /(x).
La situation peut encore se décrire ainsi. On considère sur l'intervalle

fermé I [0, 1] une fonction réelle F. On pose

/o F( 1) - F(0)

et généralement

/.(x,,x.) - 2- (f + + | + i) - F + + £)) ;

c'est la pente de la corde du graphe de F au-dessus de l'intervalle dyadique

xx Xn X1 xn 1

—— -f- H — —— -}- H -a
2 "" 2" ' 2 "" 2" 2n

(c'est ce que nous appellerons une « corde dyadique »). Toute martingale
dyadique peut s'obtenir de cette façon. Si la fonction F est partout dérivable,
la martingale est partout convergente, avec pour limite

(5) f(x)F'^xj-2-jy
Le calcul de f0 à partir de / est bien une totalisation de la dérivée F'
sur l'intervalle [0, 1]. Réciproquement, si la martingale est partout convergente,

on peut dire que F est « dérivable au sens dyadique » ; cela signifie,

pour tout point t e [0, 1] non dyadique, que les pentes des cordes dyadiques
au-dessus de t tendent vers une limite, la « dérivée dyadique », et qu'en tout
point t g [0, 1] dyadique, les pentes des cordes dyadiques ayant leur extrémité

droite resp. gauche au-dessus de t tendent vers une limite, la « dérivée

dyadique gauche » resp. « droite ». En posant, quand t n'est pas dyadique

00

(6) f E^.2^
1

et, quand t est dyadique
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t + 0 £ xj • 2 j (xj 0 pour j grand)
i

(7)
00

t - 0 * £ Xj • 2-i (Xj 1 pour j grand),
î

les expressions F(t), F(t + 0), F'(t-0) données par (5) sont les dérivées

dyadiques (resp. droite, resp. gauche). Notre problème, un peu plus général

que celui de Denjoy, consiste à calculer une fonction F à partir de ses

dérivées dyadiques, supposées exister en tout point.
Restreignons F à l'ensemble des nombres dyadiques (les autres

n'interviennent pas dans la définition des dérivées dyadiques) et observons que si F
a ses dérivées dyadiques partout > 0, F est strictement croissante. C'est

un analogue du théorème de Rolle qui s'établit aisément par dichotomie:
s'il existait une corde dyadique à pente ^ 0, il existerait une suite de telles

cordes au-dessus d'intervalles dyadiques emboîtés décroissants, donc une
dérivée dyadique ^ 0. La première conséquence est le théorème d'unicité:
si / 0, F est une constante, donc fn 0. Voici une seconde conséquence.

Lemme. Si a ^ ^ ß, on a a ^ /„ ^ ß pour tout n.

^ F(t) - F(s) ^ QPreuve, a^^ ß.
t - s

La solution: totalisation dyadique

Revenons à X. C'est un espace probabilisé, avec la probabilité naturelle
(à savoir l'image réciproque de la mesure de Lebesgue sur [0, 1] par
l'application x -> t vue en (6)). C'est aussi un espace topologique, engendré
par les ouverts-fermés

C(£!, s2,... s„) {x:*! e1,x2 s2,...,xn £„}

que nous appelons cellules d'ordre n(neN), et il a la propriété de Baire:
si X est la limite d'une suite croissante de fermés, ces fermés, à partir
d'un certain rang, contiennent une cellule. Comme les /„ sont des fonctions
continues, les ensembles

Em{x:sup | f-| < 1}
n^m, p^m

sont des fermés. Comme les /„ convergent en tout point, la réunion des
Em est X. D'après la propriété de Baire, les à partir d'un certain rang,
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contiennent une cellule. En conclusion, il existe des cellules sur lesquelles
la fonction / est bornée. Soit C une telle cellule, d'ordre minimum.

Si C X, le lemme montre que les fn sont bornées. Le théorème de

Lebesgue s'applique et donne

(dx représente l'élément de mesure de probabilité, et Jix la moyenne sur
X). Le problème est alors résolu. La totalisation s'arrête à la première
étape.

En général, la martingale /„, restreinte à C et à des valeurs de n assez

grandes (supérieures à l'ordre de C) définit une nouvelle martingale dyadique,
dont la valeur moyenne est

(Jic représentant la moyenne sur C et n(C) l'ordre de C), parce que les

fn sont bornées sur C et convergent vers /. Formellement, la martingale
dyadique fn restreinte à C C(sx, s2,... sk) est la martingale

9m(yi ,y2. - ym),s2,-
et la moyenne sur C est l'intégrale par rapport à dy.

Si C / X, on répète l'argument ci-dessus en remplaçant X par X\C.
On obtient une nouvelle cellule d'ordre minimum, C2, disjointe de C, sur
laquelle la fonction / est bornée. Remarquons que C + C2 ^ X (sinon,
l'ordre de C ne serait pas minimal). On peut donc poursuivre: posant
C1 s C, on définit une suite infinie de cellules disjointes C1, C2,..., Ck...

d'ordres croissants (chacune, à son étape, d'ordre minimum) telles que /
est bornée sur chaque Ck. Posons f° /. Remplaçons / sur C1 par sa

moyenne /(C1), puis sur C2 par sa moyenne /(C2), et ainsi de suite:

on obtient une suite f1, f2,..., fk,... telle qu'on passe de fk~l à fk en

prenant pour nouvelle valeur sur Ck la moyenne /fc_1(Cfc). La /c-ième étape
de la totalisation consiste précisément à déterminer Ck et à calculer fk.
Remarquons que fk est la limite de la martingale fk(n 0, 1,...) obtenue en

arrêtant la martingale /„, sur chaque Cj(j^k), au temps n(Cj).

Posons maintenant

fo fn (x)dx f(x)dx Jix{f)
X X

m Jic{fn)

00

Gra y Ck, lira fk.

L'étape d'ordre od (premier ordinal infini) consiste à déterminer G'" et f".
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Remarquons que G03 est dense dans X, que G03 / X, et que les Ck

sont les cellules maximales contenues dans G03 (il est bon de noter que,

si une cellule admet une partition en cellules, cette partition est finie).

Posons X\Ga. Ainsi /œ / sur K03.

Remarquons aussi que /œ est la limite de la martingale dyadique

fl qui s'obtient en remplaçant fn(x) par f(Ck) quand x e Ck et n ^ n(Ck).

L'étape d'ordre co + 1 consiste à répéter pour /" et K® ce que nous

avons fait au départ pour / et X. On considère les fermés

El {:x : sup |/»-/?(*)!< 1} •

n^ m,m
Suivant Baire, il existe un entier m et une cellule C tels que

0 / C n Xe0 ci ££ n K
La différence C\C n K est une somme infinie de C* (les cellules maximales

contenues dans C n G03), disons

C\C nr= A A(C, K03).
keA

Pour chaque k e A, la cellule mère de Ck (c'est-à-dire d'ordre immédiatement
inférieur et contenant Ck) rencontre iC°; sinon, elle aurait dû être choisie

comme C\j ^ k. Désignons par Dk la cellule sœur de Cfc; remarquons
qu'elle est contenue dans C, donc

0 ^ Dk n K* œ E n K
Choisissons n n(Cfc): alors /" est constant sur Ck (égal à /(Ck)), /®
est constant sur Dk, et /"_1 est constant sur + Dk, égal à la moyenne
des deux valeurs précédentes. Si k g A et k est assez grand, à savoir
n n(Cfc) > m, choisissons x e Dk n Comme xeEJona

1 /?(*) - /"M I < 1

- f*(x)\ ^ 1

et par conséquent

i f(ck) - m 1^3.
Or fa est borné sur C n iC3. Donc /03 est uniformément borné sur les
Ck(keA). En définitive, /03 est borné sur C.

On choisit pour Cû3 + 1
une cellule maximale, intersectant K03, où /œ

est borné, et on considère la moyenne /Û3(CÛ3 + 1). C'est l'étape d'ordre
co + 1.
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Si CM + 1 I, on a terminé. Sinon, on peut poursuivre, et définir une
suite de cellules d'ordres croissants CC0 + 2, Cw + 3, C(ù+k,... (chacune, à son étape,
étant d'ordre minimum) telles que /w est bornée sur chaque Cm + k. On
désigne par f(ù(C(û + k) la valeur moyenne de /m sur C(û + k. L'étape d'ordre
co + k consiste à définir CM+k et à calculer /CÛ(CCÙ + fe). Les cellules
C® + fc(/c*s0, 1,...) sont disjointes, leur réunion G2co est dense dans X et
K2(û X\G2(Û est un compact non vide. En remplaçant /œ par /CÛ(CC0 + fe)

sur chaque C®"1"*, on obtient une nouvelle fonction /2co, qui est encore limite
de martingale dyadique, transformée de la martingale initiale par un dispositif
d'arrêt. C'est l'étape d'ordre 2co.

L'étape d'ordre 2co + 1 considère /2cû et K2(ù. Si f2(ù est bornée sur
K2(û (c'est-à-dire si / est bornée sur iX2cû, puisque / /® f2(ù sur
K2co)} y2œ est bornée sur X et son intégration fournit f0: la totalisation
s'arrête à cette étape. Sinon, on va comme ci-dessus jusqu'à l'étape 3co,

où se trouvent définis un compact K3(û strictement inclus dans K2(ù, et

une fonction /3co, limite de martingale dyadique.
Si /3co est bornée sur K3(ù, elle est bornée partout, son intégration

fournit /0, la totalisation s'arrête à l'étape 3co. Sinon, elle se poursuit
jusqu'à l'étape 4cû, et ainsi de suite.

Si la totalisation ne s'arrête pas avant l'étape co2, les compacts K*0,

K2œ, ^3® _ ont une intersection non vide, X®2, et les fonctions Z®, /2cù, /3tû,...
ont une limite /m2, égale à / sur K®2, constante sur les cellules maximales

contenues dans le complémentaire de K0*2, et limite d'une martingale
transformée par arrêt de la martingale initiale. La totalisation s'arrête à l'étape
co2 si / est bornée sur Kw2, et se poursuit sinon jusqu'à l'étape co2 -h co

au moins.
De façon générale, si a est un ordinal limite avant lequel la totalisation

se poursuit, Ka est la limite décroissante des iXß, ß < a, et /a est égale à /
sur Ka, et limite de la martingale initiale convenablement arrêtée. La
totalisation s'arrête si / est bornée sur Ka, donc fa bornée partout. Elle se

poursuit sinon jusqu'à a + co au moins, par le procédé de construction des

K*+k et faJrk qui se trouve détaillé plus haut lorsque a co.

La chaîne des Ka est strictement décroissante, puisque le passage de

K* à Ka+1 consiste à supprimer une portion dyadique de Ka (intersection
de Ka avec une cellule convenable). Comme il n'y a qu'une infinité dénom-

brable de cellules, la chaîne s'arrête à un ordinal dénombrable, où la
totalisation est achevée.
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Commentaires

1. Il existe une autre structure intéressante de X, celle du groupe

abélien. Les caractères coordonnés sont les « fonctions de Rademacher »

rjfe(x) (_i)^(/c=i? 2,...). Les caractères généraux sont les « fonctions de

Walsh » wn(n 0, 1,...) ainsi définies

n rpon Ea^"1
(otk 0 ou 1, Yj somme finie, J~[ produit fini). Une « série de Fourier-

Walsh » est de la forme
oo

Z anwn
n — 0

Les sommes partielles d'ordre 2k (de la forme £ d'une telle série forment
0^n<2k

une martingale dyadique. Si la série est partout convergente, la totalisation

que nous venons de décrire permet de calculer à partir de la somme le

premier coefficient, a0, et de même (en totalisant sur des cellules au lieu
de X entier) les autres coefficients. Ainsi, sur ce modèle dyadique, le calcul
des coefficients d'une série trigonométrique (remplacée par une série de

Fourier-Walsh) apparaît très naturel. Naturellement, le cas trigonométrique
ordinaire requiert beaucoup plus de travail.

2. Dans la théorie ordinaire des martingales, on ne se soucie pas des

ensembles de mesure nulle. Ici, il est essentiel que la martingale converge
partout sur X. D'une martingale convergeant partout sauf en un point, on ne
saurait rien dire.

3. Dans la théorie ordinaire des martingales, s'il y a convergence dans

L1, la valeur initiale est l'intégrale de la fonction limite, et ne dépend donc

que de la distribution de la fonction limite. D'ailleurs, la distribution de la
fonction limite peut être n'importe quelle distribution p sur R, pourvu que

l'intégrale | y | d\i(y) soit finie. (On choisit arbitrairement une fonction

ayant cette distribution; ses espérances conditionnelles relativement aux
tribus cTn engendrées par les cellules d'ordre n convergent vers elle presque
partout et dans L1). Ici, il apparaît deux cas. Si la limite (partout) est

intégrable, la valeur initiale est l'intégrale de la limite, et ne dépend donc
que de sa distribution. Sinon, la valeur initiale est la totale de la limite,
et elle n'est pas du tout déterminée par sa distribution. Il est naturel de
chercher ce qu'on peut dire de la distribution de la fonction limite. C'est
l'objet de l'appendice.

k
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4. Dans la totalisation dyadique apparaît une chaîne de compacts non-
denses Ka strictement décroissants. Limitons-nous aux ordinaux limites

(oc gd, 2co, 3co,... cû2, co2 + co,...),

que nous écrivons

a ßoa (ß 1, 2, 3,... co, co +1,...).

La différence x(ß + 1)co\Kßcü est un ensemble infini. Inversement, étant donné

une chaîne (dénombrable) Jfß de compacts non-denses de X, décroissants

vers 0, et telle que jfß\jfß + 1 est infini pour tout ß, on voit comment
construire une chaîne Ka telle que Kßco Jfß, telle que les Ka soient des

compacts non-denses, et qu'on passe de Ka à Ka + 1

par ablation d'une portion
dyadique. On voit encore, les Ka étant ainsi choisis, comment construire des

/a, tels que chaque fa soit constante sur les cellules maximales disjointes
de Ka, non bornée au voisinage de chaque point de Ka+1 et bornée au
voisinage de Ka\Ka + 1, avec la propriété que la moyenne de fa sur la
cellule minimale Ca contenant Ka\Ka+1 vaut /a+1 (constante sur Ca). Ainsi,
en remontant la chaîne, on peut reconstituer la fonction / f° telle que,
dans la totalisation, on trouve à l'étape d'ordre a le compact Ka et la
fonction /a.

5. Voici quelques références. Les travaux de Denjoy débutent avec deux

notes aux Comptes-Rendus [1], [2], qui exposent rapidement la totalisation
qu'il appellera plus tard « simple », et son usage pour le calcul des primitives.
La totalisation dyadique ici introduite diffère de la totalisation simple de

Denjoy en ce qu'elle considère uniquement des intervalles dyadiques (au
lieu d'intervalles quelconques) et des fonctions bornées (au lieu de fonctions
intégrables au sens de Lebesgue). L'exposé le plus complet de la totalisation
simple et des autres totalisations de Denjoy se trouve dans le monumental

ouvrage [3], dont les chapitres VII et VIII (pp. 327-481) sont consacrés aux
totalisations, et le chapitre IX (pp. 483-595) à l'application aux séries

trigonométriques.
La totalisation simple est un cas particulier de 1'« intégrale de Riemann

généralisée » de R. Henstock ([4], chap. 10). D'après Pacquement [5],
l'intégrale de Henstock permet l'intégration des dérivées dyadiques, au sens

précisé ici (le terme de « dérivée dyadique » est employé dans un sens tout
différent par P. Butzer et ses collaborateurs). Voir également les travaux de

V. A. Skvorcov, qui méritent une particulière attention [6], [7], [8], [9].
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Appendice: distribution de la fonction /
Théorème. Pour qu'une mesure positive p sur R soit la distribution

d'une limite de martingale dyadique partout convergente (au sens de (3)) il

faut et il suffit que l'on ait

(8)

(9)

| y | d[i(y) < oo
R

y I My) ydii(y) co
R +

Preuve. Nous identifierons X et l'intervalle [0, 1] de R où les points

dyadiques autres que 0 et 1 sont dédoublés (voir (6) et (7)). Ainsi, une fonction
continue sur X est une fonction continue sur [0, 1]\D (D est l'ensemble des

points dyadiques) admettant des limites en 0 et en 1, et, en tout point de D

autre que 0 et 1, une limite à droite et une limite à gauche. Considérons
des cas de difficulté croissante

a) p est portée par un intervalle [a, b] et charge tout sous-intervalle de

[,a, fi]. Soit / la fonction croissante sur [0, 1] dont la distribution est p.

Comme / est continue sur [0, 1], les espérances conditionnelles fn E(fjZTn)

{fTn est la n-ième tribu dyadique) convergent uniformément vers /.
b) p est portée par un intervalle [a, fi], et la fonction de répartition

hO7) h(— 005 y) est dyadique sur les paliers (intervalles de constance) Pn.
Elle est donc strictement croissante sur [a, fi]\u Pn et applique cet ensemble
dans [0, l]\u {p„}, où pneD. La fonction réciproque se prolonge en une
fonction continue / sur X, et les espérances conditionnelles fn convergent
uniformément vers / sur X.

c) p est portée par un intervalle [a, fi], et la fonction de répartition
p(x) admet un palier unique P entre a et fi, où sa valeur p n'est pas
dyadique. Etant donné s > 0, tel que s < inf(p, 1 —p), choisissons p1 e D

g
tel que | p1 — p \ < - et posons p' 2p — p1, puis choisissons p2e D tel

s
que | p2 — p' | < et posons p" 2p' — p2, et ainsi de suite. On obtient

une suite p1,p2,... pn,... contenue dans D, convergente, telle que

OO

(10) P IP„ 2-
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et

(11) I lim pn - p I < 8

Désignons par \|/„ l'application de [0,1] sur [2~n, 2~n + 1] qui applique
linéairement [0, p] sur [2~", 2~n + p„2~n] et [p, 1] sur [2~" + pn2~", 2~" + 1],

et désignons par cp„ l'application réciproque de \[/„. Soit g la fonction
croissante sur [0, 1], définie et continue sauf en p, dont la distribution
est p. Chaque fonction p ° (p„ est prolongeable par continuité sur X, et sa

fonction de répartition est \|/„(p(. — 2~"). D'après (10) et (11) on a

00

(12) I^(.)-2-) fi(.)
1

(13) lim 2" \|/„(jl(. \|/(ji(.

où i|/ est l'application de [0, 1] sur lui-même qui applique linéairement
[0, p] sur [0, lim pn] et [p, 1] sur [lim p„, 1]. Posons

00

(14) / X 9 °
1

et remarquons que les supports des g ° cpn constituent une partition de

X\{0}. D'après (12) la distribution de / est p. Pour m < n l'espérance
conditionnelle fm E(f/^~m) est constante sur [2~n, 2~" + 1] et égale à la
valeur moyenne de g ° cp„, qui est

y d(4vii) (y)

En posant

/(0) y d(i°ß) (y)

/ est limite des fm en tout point, y compris 0.

d) p est portée par un intervalle [a, h]. Choisissons un dénombrable
dense dans [0, 1], contenant 0, 1, et toutes les valeurs de la fonction de

répartition p(.) sur les paliers; soit À ce dénombrable. Fixons 0 < s < 1.

Ordonnons À en commençant par 0 et 1, de façon quelconque ensuite, et

définissons par induction suivant cet ordre une fonction yx croissante sur À,

appliquant À dans D, telle que y-^O) 0, yx(l) 1, et

(15) (1 ~ f) ^ Yl^ Yl^ ** f1 + l)
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pour tout couple (p, q) d'éléments de À tels que p > q. Soit A' l'image de À

dans l'application p —> p' 2p — y1 (p), puis y2 une fonction croissante sur

À', appliquant À' dans D, avec y2(0) 0, y2(l) 1, et

(16) (p'-q') < y i(p')-Yzi'/') < (i ip'-q')

pour tout couple (p', q') d'éléments de A' tels que p' < q', et ainsi de suite.

Il résulte de (15) (en choisissant q 0), que

s
I P' ~ P I I Yi(P) ~ P I <

2

et de (16), en posant p" 2p' — y2(p'\ que

i p"P'i< |
et ainsi de suite. A chaque p e A correspondent deux suites p(n) et

Pn ln{p{n~1]\ Qui convergent vers une même limite y(p) telle que
I Y(p) — P telle que (10) ait lieu. A partir de là on construit les

fonctions continues \|/„ appliquant [0, 1] sur [2~n, 2" + 1] de façon que, pour
chaque p e A,

YB(p) 2~n + pn2~n,

les fonctions réciproques cp„ et la fonction / comme en (14). De nouveau

/ est limite d'une martingale dyadique et / admet p pour distribution.

e) p vérifie (8). Quitte à translater p, supposons

posons p en une somme

y d\i(y) 0. Décom-

(17) ^ Z IV,
i

chaque étant à support compact [an, bj, avec p„(R) 2~" et

(18) yd\i„{y) 0.

A la normalisation près, l'hypothèse d) est vérifiée pour |i„. Il existe donc
une fonction /<"' portée par [2"", 2""+1], limite de martingale dyadique,
admettant p„ pour distribution. Remarquons que la valeur moyenne de fM
est 0. Posons
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00

(19) / I/(n).
1

Alors / est limite de martingale dyadique et sa distribution est p.

f) p vérifie (9). On la décompose encore sous la forme (17), on définit
les f{n) et / par (19). La condition est la même, et la totale de /,
/o, est nulle. En remplaçant 0 par oc dans le second membre de (18) ce

qui est possible à cause de l'hypothèse (9), on obtient f0 oc. Le théorème

est démontré.

Remarquons que la totalisation de la fonction / nécessite une seule

étape dans les cas a), b), c), d), et qu'elle est pratiquement terminée à

l'étape o (K® est réduit à {0}) dans les cas e) et f).

Dans le cas f) on peut introduire un « arbre de distribution » permettant
le calcul de f0. Il s'agit de l'arbre des mesures pei(.„>èw qui sont les

distributions de / sur les cellules C(sl5..., sj. Ainsi

JH-SI,...,£„ Pei ,...,£„, 0 "f"

W...,£n(C(eej) - pei,...,£n(X) 2~"

(n 0, 1,...; £j 0 ou 1). La condition (20) est nécessaire, mais elle n'est pas
suffisante. La théorie de la totalisation dyadique montre que se trouve
nécessairement dans l'arbre une infinité de mesures à supports compacts;
la première étape de la totalisation consiste à remplacer ces mesures par des

mesures ponctuelles ayant même masse et même centre de gravité; dans le

nouvel arbre, on recommence l'opération, et ainsi de suite, transfiniment au

besoin, jusqu'à obtenir un arbre stationnaire. Cet arbre stationnaire décrit
alors la martingale dyadique (au niveau n, on obtient la distribution de

/„). Il serait intéressant de connaître la caractérisation des arbres de

distributions des limites de martingales dyadiques.

Citations et pastiche

L Si une part de mon œuvre mathématique vient a sauver mon nom de

l'oubli, sans doute resterai-je l'analyste qui le premier a trouvé les moyens
d'intégrer toute dérivée et de calculer les coefficients de toute série trigo-
nométrique convergente de somme donnée.

Arnaud Denjoy
Notice sur les travaux scientifiques,

Paris, Hermann, 1934 (p. 5)
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2. Les théories les plus audacieuses des mathématiques récentes

n'effrayaient nullement Painlevé. Il avait une aptitude admirable à les saisir,

malgré toute leur nouveauté, et même à les résumer avec un bonheur

d'expression auquel l'auteur lui-même n'aurait pas su atteindre. Quelqu'un

lui exposait un jour, dans une conversation, l'économie d'une méthode

d'intégration, procédant par une infinité d'étapes successives, chacune d'elles

s'arrêtant à un ensemble-barrière, dont l'étape suivante enlève au moins un

morceau. « Oui, tout y passe », répondit Painlevé qui suivait avec une attention

et une lucidité parfaites les explications de son interlocuteur. Ce mot

exprimait d'une façon merveilleusement compréhensive, et l'impossibilité qu'un
irréductible noyau de résistance à la méthode se constituât, et l'achèvement

nécessaire des opérations au terme accessible d'une chaîne de calculs.

Arnaud Denjoy
Hommes, forme et le nombre

Paris, Blanchard, 1964 (p. 87-88)

3. La dérivée dyadique est une forteresse. Elle a été construite, par
des bâtisseurs géomètres, à partir d'un terre-plein de grande hauteur, suivant

un plan dont on a perdu la trace; on ignore même la hauteur du terre-plein
de départ. On sait seulement que les bâtisseurs procédaient par étapes et

selon un système: au départ, ils ont divisé le terre-plein en deux parties
égales, porté de la terre d'une partie sur l'autre et nivelé; sur chacun des

niveaux ils ont procédé de même, et ainsi de suite, construisant ainsi, de

plus en plus hauts, de plus en plus profonds, de plus en plus tourmentés,
des tours et des fossés, des créneaux et des puits, des clochers, des ravins,
un édifice fantastique joignant le ciel et les abîmes. Le totalisateur va
démanteler la forteresse, et la ramener au terre-plein de départ. Pour cela, il
s'attaque d'abord aux places les plus faibles, aux plages sur lesquelles
le relief est borné et donc facile à niveler. Une fois nivelée chacune de

ces plages, la forteresse est à peine entamée. Mais le nivellement qu'on
vient d'opérer fait apparaître de nouvelles places faibles, que le totalisateur
nivelle à leur tour. Ainsi de proche en proche, autour du cœur encore
inviolé, des plateaux remplacent les morceaux abattus, s'agrandissant et s'enri-
chissant sans cesse de nouveaux décombres. A chaque étape, de nouveaux
murs s'écroulent, le cœur de la forteresse se réduit. Mais si les bâtisseurs
ont été habiles, ni mille ni mille milliards d'étapes ne suffisent à détruire
ce qui reste. Tout l'art du totalisateur est alors de bien employer son temps.
Accélérant son œuvre, il fait tenir une infinité d'étapes en une heure. L'heure
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écoulée, s'il reste encore à faire il se donne une demi-heure pour une
infinité de nouveaux assauts. Si cela ne suffit pas, encore un quart d'heure
et ainsi de suite. Si, la seconde heure écoulée, quelque chose reste debout,
il presse encore le rythme. Chaque attaque emportant un morceau, s'il les

précipite comme il convient, rien ne résiste, tout y passe, il vient un instant
où le dernier pan de mur s'effondre, et le nivellement est achevé.

RÉFÉRENCES

[1] Denjoy, A. Une extension de l'intégrale de M. Lebesgue. C. R. Acad. Se. Paris 154

(1er avril 1912), 859-861.

[2] Calcul de la primitive de la fonction dérivée la plus générale. C. R. Acad.
Se. Paris 154 (15 avril 1912), 1075-1078.

[3] Leçons sur le calcul des coefficients d'une série trigonométrique. Cinq volumes.
Paris, Gauthier-Villars, 1941-1949.

[4] Henstock, R. Linear analysis. Butterworth, 1967.

[5] Pacquement, A. Détermination d'une fonction au moyen de sa dérivée sur un
réseau binaire. C. R. Acad. Se. Paris 284, A (1977), 365-368.

[6] Skvorcov, V. A. Skvortsov, V. A.). On Haar series with convergent sub¬

sequences of partial sums. Soviet Math. Dokl. 9 (1968), 1469-1471.

[7] Calcul des coefficients des séries de Haar partout convergentes (en russe).
Matemat. Sbornik 75 (1968), 349-360.

[8] Generalized integrals in the theory of trigonometric, Haar, and Walsh series.
Real Analysis Exchange 12 (1986-87), 59-62.

[9] A dyadic Henstock integral. Real Analysis Exchange 14 (1988-89), à paraître.

(Reçu le 5 janvier 1988)

Jean-Pierre Kahane

Unité Associée CNRS 757
Université de Paris-Sud
Mathématiques — Bât. 425
91405 Orsay Cedex (France)


	UNE THÉORIE DE DENJOY DES MARTINGALES DYADIQUES
	problème
	solution: totalisation dyadique
	Commentaires
	Appendice: distribution de la fonction f
	CITATIONS ET PASTICHE
	...


