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3. HEeLICES IN S°

A spherical helix in S° is a curve p(t) of constant geodesic curvature
and torsion. As in R3, two spherical helices of the same curvature and

torsion are congruent.
If the curvature is nonzero, then we can define a Frenet frame TI(2),
N(t), B(t) along p(t) in the usual way, and get the Frenet equations:

T =xN, N = —xT —1B, B =1N.

Here we assume that ¢ is an arc length parameter along p(t), and use
primes ' to denote covariant differentiation of vector fields along this path.
A model helix in S> is given by

p(t) = (cos & cos at, cos o sin at, sin o cos bt, sin o sin b) .
Here o ranges between 0 and /2 and determines the shape of the flat torus
x2 4+ x%2 =cos’a, x3+ xi=sin’a,

on which the helix p(f) lies. We take the numbers a and b to be = 0,
and require that

a®cos? o + b%sin?a =1,
so that the helix will be traversed at unit speed. Every spherical helix in S°
is congruent to one of these models.
Next, we give formulas for the curvature x, torsion 7, and writhe
p = /x% + 12 of the model helix p(t) in terms of the descriptive parameters

o, a and b. These formulas are given as general information only, and will
not be used here.

We first record two simple inequalities which follow from the equality
a?cos? o + b%sin® o = 1.

Note that a = 1 and b = 1 satisfies this equation. So if one of these
quantities increases above 1, the other must decrease below 1. Arranging
matters so that a is the larger of the two, we will then have

(@®>—1)(1-b%)=0.
In addition,
a’? + b* > a*cos? o + b?sin?a = 1,
so we have

a? +b>—-1>0.
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The formulas for curvature, torsion and writhe are as follows.

Curvature = x = \/(?12—1) (1—-b?%
ab

Torsion =1 =

Writhe =p=./a®> +b>—1.

Consider the 3-dimensional linear space of vector fields
aT(t) + bN(t) + c¢B(z)

which can be written as constant coefficient combinations of the Frenet
vectors along the helix p(t). Covariant differentiation along the helix maps
this linear space to itself according to the Frenet formulas.

We’ve already noted in the introduction that the instantaneous axis vector
U = 1T — xB satisfies U’ = 0.

Comnsider the vectors N and V = (x/p)T + (t/p)B, which form an ortho-
normal basis for the orthogonal complement of U. Note that

N = —xT —11B = —pV, and
V' = (x/p)T" + (t/p)B" = (x/p) (xN) + (1/p) (tN) = pN.
Thus, covariant differentiation along the helix kills the instantaneous axis

vector and takes the orthogonal 2-plane to itself by a 90 rotation, followed
by multiplication by the writhe.

4. SASAKI'S EQUATIONS

Let M be any Riemannian manifold, and UM its unit tangent bundle
with the Riemannian metric described in section 1.

THEOREM (Sasaki [Sa], 1958). The curve (p(t), v(t)) in UM isa constant
speed geodesic there if and only if both of the following equations hold:

1) U” — _ <U” v/ > U
2) p" = R, vp .

Here, primes denote ordinary derivatives with respect to ¢t when applied
to functions, and covariant derivatives along the path p(t) when applied
to vector fields. For example, the first prime in p” represents ordinary
differentiation, the second, covariant differentiation. The symbol R denotes the
Riemann curvature transformation

R:TM, x TM, - Hom(TM,, TM,).
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