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the way Lebrun did. LeBrun arrives at his flat CP! bundle through a
foliation argument which presumably can be mimicked in the 3-manifold.

§4. HODGE THEORY FOR HYPERBOLIC 3-MANIFOLDS

Apart from the topological and geometrical applications which we
discussed in § 3, our Kaluza-Klein approach also has some more analytical
applications.

Recall that the Hodge-star #: Q"(Y) — Q(Y), on a 2n-dimensional oriented
Riemannian manifold Y, depends only on the conformal structure underlying
the metric. This has two consequences:

1) The L*norm |o|?> =0 A *o, of 0eQ'(Y), is conformally
invariant.

2) The harmonic n-forms, i.e. the ® € Q*(Y) s.t. do = d*o = 0, depend
only on the conformal structure of Y.

Of course conformal rescaling lies at the heart of our construction
in § 2, and we shall now show how the above applies to this situation. Let X
be the conformal compactification of M x S' as in § 2. Harmonic 2-forms
on X are automatically S’-invariant because they are in one-one cor-
respondence with the elements of H*X ;R)(=H*M ;R) @ H(M, 3M ; R),
see §2). By restriction to the open subset M x S' = X and a conformal
rescaling of the metric on M x S, 2) above implies that we get Sl-invariant
harmonic 2-forms on M x S! with respect to the product metric.

An S'-invariant form can be written as ® = p*a + p*B A dO, with
ae Q*(M), Be QM) and p: M x S'! - M the projection. A short com-
putation shows that such S'-invariant forms ® are harmonic iff o and B
are harmonic on M. If © is a harmonic 2-form on M x S! arising from
a form on X then it follows from proposition 2.2 that o e Q*M) and
BeQ'(M) are harmonic representatives for the class e H*(M;R)
® H'(M,dM ;R). The forms o and B have finite L?>-norm on M by 1)
above.

Conversely any S'-invariant, harmonic 2-form @ on M x S® with finite
L*-norm arises in this way. By 1) above one can always consider @ to be
an L*-form o on X because U S; = X\M x S* has measure 0. Applying
the first order elliptic operator d @ d* to w gives a distributional form in
L% (A*(X)) of distributional order < 1, which has support in the co-
dimension 2 manifold U;S; = X. The following lemma shows that this
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implies that (dPd*)o = 0, which proves that ® is a smooth harmonic
form on X, as we claimed.

LEMMA 4.1. Let p be a distribution of order <1 in L%, (R". If
supp i is contained in R"™? then p = 0.

Proof. Without loss of generality assume that p is compactly supported.
The structure theorem for distributions carried by submanifolds (see Hor-
mander [21] theorem 2.3.5) asserts that p is a finite linear combination
of distributions v of the form <v, f> = <, Ogn-2-D%- f>, where nis a
compactly supported distribution on R"™ 2, 8g.-- is restriction to R"~? and
D* is a k-th derivative (0<k<1) in a direction n normal to R*2,

The Fourier transform [i(u, x, y) is a smooth function on R*" 2@ R @ R
of the form fy(u) + fi(w)+x + fo(u)+y. It is easy to see from this that the
L2 ,-norm cannot be finite, unless p = 0. ]

Denote by #"/(M) the vectorspace of harmonic (i.e. closed and coclosed)
i-forms on M with finite L*-norm. Summarizing the above we have proved:

THEOREM 4.2. The natural maps A (M) - HY (M, 8M ;R) and H"*(M)
— H?*(M ;R) are isomorphisms. =

On the universal cover, Poisson transformation gives a one-one cor-
respondence between closed and co-closed 1-forms on H?® and exact one
forms with hyperfunction coefficients on 8H?>, and this is what we shall
exploit next. If the hyperfunction one form is continuous then it is the
boundary value of the one form on H?> in the classical sense, this is
special for hyperbolic space. Thus in this case Poisson transformation is
solving a Dirichlet boundary value problem on (H?® 8H?®). The Poisson
transform 2(¢p) of a continuous function ¢ on SH?> is defined as (see
e.g. Gaillard [13]):

P($) (h) = [, P(h,b)- &(b)  with  P(h,b) = n™ '(hs/|h—b|*)*db,Adb,

where h = (hy, h,,h;) e R3 = H? hy > 0 and b = (b,, b,,0) e R? = §H>.
For exact one-forms o = dd we define P(a) = dP(d). As #(d) is harmonic,
P(a) is closed and co-closed. Using this, we can identify our L* cohomology
as follows:

THEOREM 4.3. Poisson transformation induces an isomorphism from I'-
invariant closed one-forms with hyperfunction coefficients on 8H> with support
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in the limit set to closed and co-closed one forms on H>/T" with finite
L? norm. Such hyperfunction one-forms are one-currents.

Proof. An L? harmonic I1-form on M lifts to an invariant 1-form ®
on H3. From Gaillard [13] we know that ® is the Poisson transform of
a unique closed l-form o on S§? = 8H> with hyperfunction coefficients.
From theorem 4.2 it follows that ® is bounded on a fundamental domain,
so it is of slow growth and therefore o is a current. Now write
o = dd,» = d for a distribution ¢ and a function V. It follows that
s is the Poisson transform of ¢ (after adding a constant). From theorem 4.2
it follows that the one form ® extends smoothly to a one form on
(H3U8H?) — A, zero on the boundary 6H?> — A. This implies that { is
smooth on (H3*US8H?®) — A. In Schlichtkrull [32], chapter 4, it is proved
that under these conditions | converges uniformly to ¢. But then ¢ must
be constant on components of 8H® — A and therefore the support of o
is contained in A.

Conversely let o be a closed 1-form with hyperfunction coeflicients in
S? with support in A, and let @ be its Poisson transform. We shall
prove that o, which is automatically closed and co-closed, has finite L?
norm. As above let ® = d{ and o = do, then ¢ is constant on components
of 8H*> — A. Apart from the boundary value ¢ there is another “boundary
value” ¢’, just as in the classical case there is the von Neumann boundary
value problem next to the Dirichlet boundary value problem. In further
analogy with the classical case the global boundary value ¢’ can be obtained
from ¢ by applying a pseudo-differential operator on S? to it, which has a
real analytic integral kernel, see Schiffmann [31]. So, ¢ and ¢’ are real
analytic in 8H> — A.

Oshima [30] theorem 5.3 shows then that locally in 8H> — A we have:

V(hy, by, hs) = cy(hy, hy, hs) + co(hy, by, hs) - h% - q(log h3),

with (hy, h,, h3) upper half space coordinates, g a polynomial in one
variable and cy(h;, h,,0) = &(hy, hy), c,(hy, by, 0) = &'(hy, h,). From this it
follows that ® has an expansion locally bounded by cst - h; - g(log hs).
Recall that a fundamental domain for the I'-action on H?® intersects
8H? in a compact fundamental domain for the I'-action in SH3 — A. This

together with our estimate implies readily that the L? norm of o restricted
to a fundamental domain is finite. N

A few remarks are in order. First of all it should be possible to give
an effective bound on the distributional order of the currents o on S2,
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and also if o = d¢ it should be possible to determine if the function ¢
(constant on components of 8H>—A) is locally integrable. Also it should be
noted that wAd9 is a solution on X of a p.d.e with real analytic coefficients,
1.e. it is real analytic. This shows inmedeately that ® has an expansion as
in the proof of theorem 4.3, without logaritmic terms.

Next we can use the above to define a simple invariant of the hyperbolic
structure on M. The Hodge star of the hyperbolic 3-manifold M gives an
isomorphism #*5: 4 (M) - A *M). Both #}(M) and #*(M) contain an
integral lattice of maximal rank coming from integral cohomology. These
lattices do not generally coincide under *5; in fact their intersection is empty
unless the 4-manifold carries a self-dual harmonic form which represents an
integral cohomology class. The relative position of the two lattices in
H?(M ; R) is described by :

4.1 M) e GL(H*M ; R))/GL(H*(M ; Z)QZ) ,

which is an invariant of the hyperbolic structure of M. Similar invariants
are very popular in algebraic geometry. There discrete lattices in a complex
vector space give rise to invariants associated to the complex structure of
manifolds.

We proceed to sketch how the above theory relating solutions of
elliptic p.de. on M to invariant solutions on X generalizes. Suppose
D:T(E) - I'(F) is a conformally invariant first order (possibly over-
determined) elliptic operator acting on sections of the vector bundle E
over X. This class of operators was studied in detail by Hitchin [18],
and comprises, among others, Dirac and twistor operators on X and the
operator d + d* on 2-forms which we studied above. Again restriction of
Sl-invariant solutions on X to M x S! gives solutions to a closely related
geometric p.d.e. on M.

Conversely we can start with a solution on M and require that it
has a finite L?>-norm on X\(US;). In general this is not the same as
having a finite L*>-norm on M, but it is the same as having a finite
weighted L?-norm on M. The weighting function is a suitable power of
the function on M which conformally rescales the hyperbolic metric on
M to a metric on X. Such a function is determined up to multiplication
by functions ¢: M — R, which are bounded above and below. The exact
value of the power needed is an inhomogeneous linear function of the
conformal weight of E. The extension over the fixed surfaces S; goes now
as in lemma 4.1. We shall not make use of this in the sequel and
therefore leave the details to the reader.
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Remarks. 1) It would be interesting to see what kind of harmonic
representatives for classes in H(M ; R) can be found.

2) Theorem 4.2 generalizes to identify elements of H’(M, 8M ;R) with
L? harmonic forms for any oriented n-dimensional Riemannian manifold M
for which a conformal compactification of M x S* exists, for all k, provided
j < n/2.

§ 5. MONOPOLES AND INSTANTONS

Our goal is now to exploit the compactification X of M x S' (see §2)
to get monopoles on M from S'-invariant instantons on X. We shall also
relate the instanton number on X to various topological invariants of the
monopoles on M. General background for this section can be found in
Freed-Uhlenbeck [12] and Jaffe-Taubes [22]. More specifically our approach
here is very similar to the one taken in Atiyah [2].

Let P be a principal SU(2)-bundle over X, with c,(P) = k > 0. Recall
that X comes naturally with a conformal structure. This enables us to talk
about instantons or anti-self-dual connections A on P. These are defined to
be the solutions of the anti-self-duality equation:

5.1 F4 = — %, F* (%, the Hodge star on A*(X)).

Here F4 is the curvature of 4, a section of A(X) ® gp with gp = P X 4a5uU(2).
The instantons are the absolute minima of the Yang-Mills functional:

5.2 YM(A) = (16n%) "' [ <F4 A *F4>

where <o, > = — 2-tr(af) is an invariant inner product on su(2). For
an instanton YM(A) = k.

Next assume that the double cover S! of S! acts on P by bundle
automorphisms, covering the action on X ; the double cover will be needed
in order to include the spin bundles of X. Our interest will now lie in

S-invariant instantons on P. To relate these to objects on M introduce
the map:

JiM - X:m—1i(m 1) (compare 2.2),

which is a diffeor~norphism onto its image. Let v be the vectorfield on P
induced by the S'-action. If we interprete an S'-invariant connection A
as a l-form on P, then define the Higgs-field ® to be the su(2)-valued
function j*A(3v) on j*P. It is easy to see that @ is a section of j*gp.
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