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32 P. RIBENBOIM

Indeed,

(2, cd) (2, co') ^4, 2co, 2cd7, -42 ^2, co, cd7, -y-j -42

because cd + co7 1.

Also (2, cd) # (2, cd7), otherwise these ideals are equal to their sum
(2, cd, cd7) A, because cd + cd7 1.

c) If d 2 or 3 (mod 4) then v42 (2, -v/d)2, respectively (2, l-b-y/^)2.
First let d 4e + 2 then

(2, y^)2 (4, 2,/d, d) ^42(2, yd, 1)

so (2, yd) is a prime ideal.

Now, let d 4e + 3, then

(2, 1 + yfd)2 (4, 2 + 2yJ~d, 1 + + 2yJrd) — (4, 2 + 2yj^d, 4(e + 1) + 2yJ~ct)

A2(2, 1 + -y7^, 2(e + 1) + y/d) A2(2, 2e + 1, 1 + ^y^, 2(e + 1) + y/d) A2

and so (2, 1 + yfd) is a prime ideal.

Finally, these three cases are exclusive and exhaustive, so the converse
assertions also hold.

E) Units

The element a e A is a unit if there exists ß e A such that aß 1.

The set U of units is a group under multiplication. Here is a description
of the group of units in the various cases. First let d < 0.

Let à / — 1, — 3. Then U {+ 1}.

Let d — 1. Then U {+ 1, + i}, with i f— 1.

Let d — 3. Then U {± 1, ± p, ± p2}, with p3 1, p ^ 1, i.e.

_ -1 + y^3

Let d > 0. Then the group of units is the product U {+l}xC,
where C is a multiplicative cyclic group. Thus C {s" | n e Z}, where s is

the smallest unit such that a > 1. s is called the fundamental unit.
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