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EQUATIONS DIFFERENTIELLES 375

deux idées élégantes ([8]). La premiére est rapportée dans I’exercice 7. Pour
la deuxiéme, il pose y(x) = u(x)-v(x) comme produit de deux fonctions
(version originale: y = m-z). Ceci donne

du dv 0 om
b S = p(x) Ut v+ () U
dx dx

On peut maintenant égaliser les deux termes séparément et on trouve

du .
(16a) — = p(x)-u pour obtenir u,
dx
dv _q :
(16b) y i g(x)u"~*-v"  pour obtenir v.
X

Pour le cas spécial n = 0, la formule (15) est ’équation linéaire inhomogéne
et les formules (16a) et (16b) deviennent ce qu’on appelle «la formule de la
variation de la constante».

LA BRACHYSTOCHRONE

«Il y a précisément un an que je proposai le Probléme de la plus vite
descente, dans les Actes de Leipsic comme tout nouveau, ne scachant
pas alors qu’il avait été tenté déja par GALILEE».

(Joh. Bernoulli, juin 1697)

«...et trouver la raison de la réfraction dans notre principe commun, qui
est que la nature agit toujours par les voies les plus courtes et les plus

aisées.»
(Fermat a De La Chambre, 1657)

«Mais, parce que j’en jugeai I’invention trés difficile et trés embarrassée,
puisque ces questions de maximis et minimis conduisent d’ordinaire a
des opérations de longue haleine et qui se brouillent aisément par une
infinité d’asymmétries qu’on trouve sur son chemin, je laissai 14 ma
pensée pendant plusieurs années, en attendant que quelque géomeétre
moins paresseux que moi en fit ou la découverte ou la démonstration.

Personne ne voulut entreprendre ce travail; ...»
(Fermat, 1664)

En automne 1696, Jacob Bernoulli traite dans ses études personnelles le
probléme de la brachystochrone et, comme Galilée, croit que la solution est
un cercle. Voici une bonne occasion pour Johann de bladmer son frére aux yeux
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du monde; il lance un grand concours dans les A.E. de 1696 ([7]) «Profundioris
in primis Mathesos cultori, Salutem!») dans le but de résoudre ce probléme.
En juin 1697, le journal recoit les solutions de Newton (anonyme, mais
identifiée grace a sa «griffe»!), Leibniz, Johann (évidemment!), de I’Hospital
et celle de Jacob, malheureusement correcte elle aussi. La solution de Johann
est la plus élégante: il fait une analogie avec ’optique (fig. 12):
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(dessin de Joh. Bernoulli).

Il pense a de nombreuses couches matérielles ou la «vitesse de lumiére» est
donnée par v = |/2gy (voir (4)). Le chemin le plus rapide est celui qui satisfait
partout a la loi de réfraction (principe de Fermat) '

v
= K.

sin o
Ceci donne, a cause de sina = 1/)/1 + "2,

(17) JI+y2-J2gy = K ou dx = /cfy-dy.

Toujours en vertu de «ergo & horum integralia aequantur», la substitution

(18a) y=c-sin2u=§—%cos2u
conduit a la formule
(18b) x=cu—§sin2u+K.

La solution est donc une cycloide.
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