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EQUATIONS DIFFÉRENTIELLES 375

deux idées élégantes ([8]). La première est rapportée dans l'exercice 7. Pour

la deuxième, il pose y(x) u(x)av(x) comme produit de deux fonctions

(version originale: y m*z). Ceci donne

du dv t \ n n
v + u p(x). u • v + q(x) • un - vn.

dx dx

On peut maintenant égaliser les deux termes séparément et on trouve

(16a) — p(x) - u pour obtenir u
dx

dv
(16b) — q{x)un ~1 • vn pour obtenir v

dx

Pour le cas spécial n 0, la formule (15) est l'équation linéaire inhomogène

et les formules (16a) et (16b) deviennent ce qu'on appelle «la formule de la

variation de la constante».

La Brachystochrone

«Il y a précisément un an que je proposai le Problème de la plus vite
descente, dans les Actes de Leipsic comme tout nouveau, ne sçachant

pas alors qu'il avait été tenté déjà par GALILEE».

(Joh. Bernoulli, juin 1697)

«...et trouver la raison de la réfraction dans notre principe commun, qui
est que la nature agit toujours par les voies les plus courtes et les plus
aisées.»

(Fermât à De La Chambre, 1657)

«Mais, parce que j'en jugeai l'invention très difficile et très embarrassée,
puisque ces questions de maximis et minimis conduisent d'ordinaire à

des opérations de longue haleine et qui se brouillent aisément par une
infinité d'asymmétries qu'on trouve sur son chemin, je laissai là ma
pensée pendant plusieurs années, en attendant que quelque géomètre
moins paresseux que moi en fît ou la découverte ou la démonstration.
Personne ne voulut entreprendre ce travail; ...»

(Fermât, 1664)

En automne 1696, Jacob Bernoulli traite dans ses études personnelles le

problème de la brachystochrone et, comme Galilée, croit que la solution est

un cercle. Voici une bonne occasion pour Johann de blâmer son frère aux yeux
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du monde; il lance un grand concours dans les A.E. de 1696 ([7]) «Profundioris
in primis Mathesos cultori, Salutem!») dans le but de résoudre ce problème.
En juin 1697, le journal reçoit les solutions de Newton (anonyme, mais

identifiée grâce à sa «griffe»!), Leibniz, Johann (évidemment!), de l'Hospital
et celle de Jacob, malheureusement correcte elle aussi. La solution de Johann
est la plus élégante: il fait une analogie avec l'optique (fig. 12):
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Figure 12.

La brachystochrone.

Figure 13.

La brachystochrone
(dessin de Joh. Bernoulli).

Il pense à de nombreuses couches matérielles où la «vitesse de lumière» est

donnée par v ]/2gy (voir (4)). Le chemin le plus rapide est celui qui satisfait

partout à la loi de réfraction (principe de Fermât)

K.
sin a

Ceci donne, à cause de sin a î/]/l + y'2,

(17) sjl + y'2 • s/2gy K ou dx J- ' dy
c — y

Toujours en vertu de «ergo & horum integralia aequantur», la substitution

(18a) y c • sin2 u — — — cos lu

conduit à la formule

(m
La solution est donc une cycloïde.

2 2

x eu sin 2u + K
2
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