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EQUATIONS DIFFERENTIELLES 379

Johann, devenu trop sir de lui, envoie immédiatement sa solution, «trouvée
en trois minutes», a Leibniz et au Journal. Comme la solution de Johann est
fausse, Jacob fait passer dans le «Journal des Savans» une série de polémiques
contre son frére qui paraissent en alternance avec les réponses non moins
agressives de ce dernier (cf. citations).

EULER ET LAGRANGE

La guerre impitoyable des fréres ennemis ne prend fin qu’apres la mort de
Jacob en 1705. Johann devient alors son successeur a Bale; excellent péda-
gogue, il trouve des éleves extraordinaires: ses trois fils et, surtout, Leonhard
Euler. Euler explore systématiquement la solution des équations différentielles
et attaque, indépendamment de Riccati, les premieres équations d’ordre
supérieur. Toutes ces recherches sont rassemblées dans les volumes XXII et
XXIII des Opera Omnia (cf. aussi Sections 1.3, 1.4 et 1.5 de [13]). Lagrange
est le premier a traiter les systemes d’équations différentielles dans son travail
sur la théorie du son [15] et, surtout, dans sa célébre mécanique analytique
[16] de 1788 (deux cents ans de mécanique de Lagrange!).

Il reste finalement a mentionner qu’Euler, en 1744, révolutionne le Calcul
variationnel (cf. [11], «...eines der schonsten mathematischen Werke, die je
geschrieben worden sind» (C. Carathéodory)) en trouvant pour le probléme
variationnel général

b
(19) J F(x, y, y)dx = min!
I’équation différentielle
d 14 /
(20) E(Fy’)—FyEFy’y’y+Fy’,vy+Fy’x_Fy:O'

Cette derniére, au cas ol F est indépendant de x, peut encore étre simplifiée en
(21) VF, — F = K

comme on le vérifie facilement en dérivant (21) par rapport & x. En 1755 , agé
de 19 ans, Lagrange trouve une nouvelle démonstration des équations d’Euler
[20] et donne toute son élégance a la théorie. De plus, pour des problémes du
type

b

b
(22) J F(x,y,y)dx = min! sous condition J G(x, y, y)dx = 0

a a
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il introduit ’idée du «multiplicateur de Lagrange» (voir [16], premiére partie,
Section IV, §1) en remplacant (22) par

b
(23) J ZL(\, x, y, y)dx = min! (vel max!)

ou ¥ est «la fonction de Lagrange»

g(}\" X5 Vs yl) = F(X, Vs y/) - )LG(X, 32 y/) .

PROBLEMES ISOPERIMETRIQUES, SUITE

Avec ces formules, introduites dans (21), le probléme isopérimétrique de
Jacob Bernoulli devient

A
(24) }’:i\/(%m—

La solution est donc décrite par quadratures

J (K+y™)dy
S = (K+ym?

=x 4+ C.

(25)

Les constantes C, K et A sont a ajuster aux conditions aux bords et a la
longueur L. Ce n’est que pour m = 1 que cette intégrale est résoluble avec
efforts raisonnables (voir Euler [11], Caput V, Exemplum II; «quae est
aequatio generalis pro Circulo»).

Pour m > 1 il s’agit d’intégrales «elliptiques» ou «hyperelliptiques» et on
a besoin de méthodes numériques. Par exemple, si on pose A =0, B =1 et
L = 4, les constantes K et A dans (25) doivent satisfaire (puisque la courbe est
symétrique il suffit de ne considérer que sa moitié¢ ascendante)

Gy e iy

26) ~
( o Jh— (K+y")? o A — (K+ym)?

ou
Ymax = (\/X_K)l/m

est la valeur de y pour laquelle le dénominateur devient zéro. Un processus
itératif (méthode de Newton) combiné avec le calcul numérique des intégrales
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