
Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 34 (1988)

Heft: 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: LE PROBLÈME DE GAUSS SUR LE NOMBRE DE CLASSES

Autor: Oesterlé, J.

Kapitel: §6. Courbes elliptiques et fonctions L

DOI: https://doi.org/10.5169/seals-56588

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 28.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-56588
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


PROBLÈME DE GAUSS 61

de façon effective les d pour lesquels h( — d) 2; les bornes obtenues sont

très grandes (Stark obtient par exemple | d \ < ÎO1100), mais Stark d'une part,

Montgomery et Weinberger de l'autre, ont mis au point des méthodes qui

permettent par un calcul sur ordinateur utilisant les zéros de la fonction

zêta de Riemann (pour Stark) ou de séries L(%, s) (pour Montgomery et

Weinberger) de vérifier que, en dessous des bornes précédentes, tous les d

pour lesquels h( — d) 2 sont ^ 427.

Pour l'instant, aucune des méthodes précédentes n'a pu être appliquée

au problème du nombre de classes h pour h ^ 3.

§ 6. Courbes elliptiques et fonctions L

Nous allons maintenant parler un peu des courbes elliptiques, car elles

jouent un rôle fondamental dans la suite de l'histoire du problème de Gauss.

Considérons une équation de la forme

(W) y2 + axxy + a3y x3 + a2x2 + a4x + a6

où les ai sont dans Q. La cubique projective E définie par l'équation
homogène associée a un unique point à l'infini 0. Lorsque E est non
singulière, on dit que E (ou plutôt que le couple (E, 0)) est une courbe

elliptique définie sur Q, et que (W) en est une équation de Weierstrass. Un
changement de variables

(C) x u2x' + r

y m3/ + sx' + t (m, r, s, t dans Q, u^O)

conduit à une autre équation de Weierstrass (W') de E. On dit que
l'équation (W) est minimale si les coefficients at sont entiers et si les équations
{W') déduites de (W) par un changement de variables (C) avec u, r, s, t
entiers et u / ± 1, ne sont pas à coefficients entiers.

Une courbe elliptique E définie sur Q admet une équation minimale et
toute autre équation minimale s'en déduit par un changement de variables
(C) avec u + 1 et r, s, t dans Z.

Supposons désormais (W) minimale. Si l'on pose

X x + (a^/12) + (a2/3)

Y y + (aJ2)x + (a3/2),

l'équation (W)s'écrit Y2 X3 -{cj48)*- (c6/864). Un calcul élémentaire
montre que c4,c6 et A (c43 —c62)/1728 s'expriment comme polynômes
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universels à coefficients entiers en al5 a2, a3, a4, a6, donc sont entiers. Ces

entiers ne dépendent pas du choix de (W), mais seulement de la courbe

elliptique. On dit que À est le discriminant minimal de E.

Soit E(Q) l'ensemble des points rationnels de E (i.e. les solutions
(x, y) e Q2 de l'équation (W), auxquelles on ajoute le point à l'infini 0).

Il existe une unique structure de groupe abélien sur E(Q), d'élément neutre 0,

pour laquelle trois points de E(Q) ont une somme nulle si et seulement si

ce sont les points d'intersection (avec multiplicités) de E et d'une droite
du plan projectif.

Pour obtenir des informations sur les solutions rationnelles de l'équation
{W), on est amené à étudier le groupe E(Q). Je pense qu'il n'est pas exagéré
de prétendre que la majeure partie des travaux effectués et des notions
introduites dans la théorie des courbes elliptiques ont pour but ultime de

décrire E(Q). Un théorème important dans cette direction est le théorème de

Mordell-Weil: le groupe E(Q) est de type fini, et est par suite isomorphe à

F x Zr où F est un groupe fini et r un entier ^ 0 (que nous appellerons
le rang de E(Q)). On a des informations précises sur F à la suite de

travaux de Mazur (par exemple, on sait que F est d'ordre ^16); par contre,

r reste pour l'instant mystérieux (on ne sait même pas s'il peut prendre des

valeurs arbitrairement grandes, bien que l'on pense que tel est le cas).

Comme les coefficients de l'équation (W) sont entiers, on peut réduire cette

équation modulo un nombre premier p, puis compter le nombre de ses

solutions (x, y) dans (Z/pZ)2. Ce nombre ne dépend pas du choix de (W),
mais seulement de E. D'après un théorème de Hasse, il est de la forme

p — ap où ap satisfait à l'inégalité

(31) | ap|< 2.
La fonction LE de Hasse-Weil associée à la courbe elliptique est par

définition la série de Dirichlet

(32) l£(s) n (i -Vs)-1 n a-«pP^+p1"25)-1.
p|A p*A

Ce produit converge pour Re (s) > 3/2 d'après (31). Un cas particulier de

conjectures générales sur les fonctions L associées à des variétés algébriques

est:

Conjecture 1. La fonction AE(s) (27u)~T(s)L£(s) admet un prolongement

holomorphe à C, borné dans toute bande verticale, et il existe

sEe{ — 1, 1} et un entier NE^1 tels que AE(2 — s) zENE~1AE(s).
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00 r

Posons Le(s) £ ann~s et définissons sur le demi-plan de Pomcare
n= 1

(x e C | Im(i) > 0} une fonction fE par

oo

(33) /£(x) I a»e2,ti"T-
n 1

La théorie de Hecke, qui s'appuie sur la transformation de Mellin
* 00

A£(s) fE(iy) f~ldy,permet de montrer l'équivalence entre la conjec-
J 0

ture 1 et la suivante :

Conjecture Y. Il existe eE e {— 1, 1} et un entier NE ^ 1 (les mêmes

qu'avant) tels que fE(—l/NET) — sENET2fE(x).

On dispose de conjectures étendant la conjecture 1 aux séries L^x,s)

— £ an%(n)n~s> avec X caractère de Dirichlet. Généralisant le travail de
n 1

Hecke, Weil x) a montré que ces conjectures pour tous les % (ou même

seulement pour une famille assez grande de %) équivalent à la suivante sur fE :

Conjecture 2 (Taniyama-Weil)2). La fonction fE satisfait à la

conjecture Y et est une forme modulaire parabolique de poids 2 pour

r0(N£).

[La dernière assertion signifie que fE((ai + b)/{cT + d)) (ct + d)2f (x) si

61 ^
appartient au sous-groupe r0(iV£) de SL2(Z) formé par les matrices

c dj
telles que NE divise c, et que la fonction x i-> /(x)Imx est bornée sur le

demi-plan de Poincaré.]
Une courbe elliptique E définie sur Q qui satisfait à la conjecture 2

est appelée courbe elliptique modulaire ou courbe de Weil. On sait que si la
courbe E est à multiplications complexes, elle est de Weil. D'autre part,
étant donnée une courbe elliptique L, il existe des algorithmes permettant
de déterminer si elle est ou non une courbe de Weil. Cela a été appliqué
à de nombreux exemples et toutes les courbes elliptiques étudiées se sont
avérées être des courbes de Weil, conformément aux conjectures.

A. Weil, Über die Bestimmung Dirichletscher Reihen durch Funktionalgleichungen,
Math. Ann. 168 (1967), 149-156.

2) Lorsque cette conjecture est satisfaite, fE est une newform au sens d'Atkin-
Lehner, d'après un théorème de W. Li ; l'entier NE est le conducteur géométrique de
la courbe elliptique E, d'après un théorème de Carayol; en particulier, les facteurs
premiers de NE sont les mêmes que ceux du discriminant minimal de E.
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Birch et Swinnerton-Dyer ont émis une autre conjecture, stupéfiante car
elle relie la fonction LE, définie à partir des nombres de solutions de

l'équation (W) sur les corps finis, au rang r de E(Q) qui fournit une
information sur les solutions rationnelles de l'équation (W). Cette conjecture

suppose implicitement la conjecture 1 satisfaite :

Conjecture 3 (Birch et Swinnerton-Dyer). Le rang r de E(Q) est

égal à l'ordre du zéro de la fonction LE au point 1.

(Birch et Swinnerton-Dyer donnent en outre une expression conjecturale
de lim (s— l)r LE(s).)

s-> 1

§ 7. Le théorème de Goldfeld

Un pas décisif vers la solution effective du problème du nombre de classes

a été franchi par Goldfeld en 1976. L'idée à la base de son travail est

la suivante : Supposons que nous connaissions une série de Dirichlet
00

_ — à\
£ ann

s telle que pour tout caractère de Dirichlet % : n i—> avec — d
n 1 \ ^ /oo

discriminant fondamental, la série an%(n)n~s ait un comportement ana-
n i

00

lytique très différent de la série £ anX(ri)n~s où X est la fonction multi-
n= 1

plicative introduite à la fin de II, § 2. On peut alors espérer d'après le

principe de II, § 2, montrer de façon effective que lorsque d est grand,
h( — d) ne peut être petit.

De fait, Goldfeld montre x) qu'il suffit de connaître une seule courbe

elliptique E définie sur Q telle que

— E soit une courbe de Weil ;

— la fonction LE ait un zéro au moins triple au point 1,

et d'appliquer l'idée précédente à la série de Dirichlet LE pour obtenir
des minorations effectives de nombres de classes. Celles-ci sont bien moins
bonnes que celles que donne l'hypothèse de Riemann généralisée (cf. § 3) :

x) D. M. Goldfeld, The conjecture of Birch and Swinnerton-Dyer and the class
number of quadratic fields, Journées Arithmétiques de Caen, Astérisque 41-42 (1977),
219-227.
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