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228 F. PAUER AND M. PFEIFHOFER

3.8. Remark. Let G be a Grobner basis of an ideal J. We shall say that G
is “simplified” if all P € G fulfill the following two conditions:

Ic (P) generates the ideal x<Ic(Q)| Q € J, deg(Q) = deg(P)>
and
in(P) ¢ <in(G—{P})> .

It is easy to see that the elements of a simplified Grobner basis have
pairwise different degrees.

If R is a field then G is simplified iff the elements of G have pairwise
different degrees and deg(G) is the set of minimal elements (with respect
to the natural partial ordering on N”) in deg (J).

If G is not simplified, then in the following way we can construct
(in a finite number of steps) a simplified Grobner basis of J:

For every P € G choose an admissible combination P’ of G such that
deg (P) = deg(P’) and lc (P’') generates the ideal

r<Ic(Q)| Qe J,deg(Q) = deg(P)> .

Then G': = {P’| P € G} is a Grobner basis of J, since <in(J)> = <in(G)>
c <in(G)> < <in(J)>.
If there is a P' € G' with in(P') e <in(G'—{P'})>, then G' — {P'} is a
Grobner basis, since then <in(G'—{P'})> = <in(G)> = <in(J)>.
Replace G' by G' — {P'}. After finitely many eliminations of this kind we
obtain a simplified Grobner basis.

In example 3.7. the Grobner basis F, is not simplified, since in(P,)
Grobner basis of the ideal generated by F,.

4. APPLICATION TO SYSTEMS OF ALGEBRAIC EQUATIONS
Let J be an ideal in R[ X7, generated by a subset F # {0}.

4.1. We may consider F as a system of algebraic equations in n variables.
We denote by K an algebraic closure of the quotient field of R.

Let Z(F) (resp. Zg(F)) be the set {z € R" (resp. K") | P(z) = O for all P € F}
of common zeros in R" (resp. K") of the elements of F. Clearly Z(F) = Z(J)
and Zy(F) = Zg(J).
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4.2. PROPOSITION. Let G be a Grobner basis of J.
1) ZyJ)y= @O iff GoR # Q.
2) The set Z{J) is finite iff N" — 2(G) is finite. In this case the
cardinality of Z(J) is smaller than or equal to the cardinality of N" — 2(G).
Proof.

1) By Hilbert’s Nullstellensatz we know:

Z(J) = @ iff J n R # @. Therefore Z(J) = @ implies 0 € deg(J), hence
GnNR# Q.

2) Let I be the ideal generated by J in K[X]. Then F is a Grobner
basis of I, too. Again by Hilbert’s Nullstellensatz the dimension (as
K-vector space) of K[X]/I is an upper bound for the cardinality of
Z(J) = Zi(I), and this dimension is finite iff Z,(J) is so. Since G is a
Grobner basis of I, one easily verifies that the residue classes X* + I,
ae N" — Z(G), form a K-basis of K[ X]/I. This proves the proposition.

4.3. PROPOSITION. Let G be a Grobner basis of J with respect to the
lexicographic ordering (see 1.2.).

If JnR[X,,..,X,] # {0}, then
G.:=Gn R[X,, .., X,]
is a Grobner basis of
Ji:=J o R[X,, .., X,];
in particular, Gy generates the ideal J, < R[X,, .., X,] (1<k<n).

Proof. Let Q € J,. For any P e R[X] with deg(P) < deg(Q) we have
P e R[Xy, .., X,], since < is the lexicographic ordering. By 2.2. and 2.5.
there are c(o, P) € Rsuch that Q = )" ¢(a, P)X*P and ¢(o, P) # 0 implies

PeG,aeN"
deg (X*P) < deg (Q).

Hence we have X°P e R[X,, .., X,] for c(a, P) # 0, and, by 2.5. again,
Gy 1s a Grobner basis of J, .

44. Now we can apply the theory of Grobner bases to find the solutions
to the system F of algebraic equations. Consider the following algorithm :

First we construct a Grobner basis G of J with respect to the lexico-

graphic ordering (see 3.6.). As in 4.3. we write Gy for G n R[X,, .., X,],
l<k<n
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Compute the greatest common divisor P, of the (univariate) polynomials

in G,. Find a zero a,e R of P,. If P, has no zero in R, then Z(J) = Q.
~ Letke {1, .., n—1}. Suppose that a;, {, ..., a, € R have already been found.

Let Gyag+y, - a,) S R[X,] be the set of polynomials in one variable X,
obtained from G, by substituting everywhere g; for X;, k + 1 <j < n

Compute the greatest common divisor P, of the polynomials in
Glax+q5 - a,). Find a zero a, € R of P,. If P, has no zero in R, we have
to go back to G, and to find another sequence a,,, ..., a4 -

If we obtain (a,,..,a,) by this algorithm, it is an element of Z(/J).
By 4.3. all elements of Z(J) can be computed in this way.

Suppose that Zg(J) is finite (ie. N"—2(G) is finite) and that we are
able to solve univariate polynomial equations in R (which is the case for
= Z). Then the algorithm above yields Z(J) in a finite number of steps.

4.5. Example. Let F be the subset

2XT+3X3X, X, — X X3+5X,-3X3-5X,X;—2X;+41,
AXT+6X3X,X,—2X , X5+10X,+3X3+5X,X;+2X3—11X3+19X;+25,
6X35+10X, X3 +2X3—11X3+21X;—40} of Z[X,,X,,X,].
By the algorithm 3.6. we get a Grobner basis G of the ideal generated by F:
G = {2X3—-11X3+17X,-6,
3X3+5X,X,+2X,—17,
2XT+3X3X,X,— X, X53+5X,+24}.

Now Z(G3) = {2,3}, Z(G,(2)) = {1}, Z(G,(3)) = @ and Z(G,(1,2)) = {—2}.
So Z(F) = {(—=2,1,2)}.

5. APPLICATION TO A (GEOMETRIC PROBLEM

51. For PeR[X] let P be the homogeneization of P by a further
variable X,,;. For an ideal J < R[X] we write J for the ideal generated
by {P|PeJ}in R[X,, .., X,11].

PROPOSITION. Let G be a Grobner basis of J with respect to the
graded inverse lexicographic ordering (see 2.1.). Then G:={P|Pe G} isa
Grébner basis of J.
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