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§ 7. ATIYAH-WARD ANSATZES, SUMMING ‘T HOOFT SOLUTIONS
AND EISENSTEIN SERIES

In this section we shall derive some explicit formulae for monopoles on
handlebodies, using the complex geometry of their twistor spaces. A detailed
study of the moduli spaces of monopoles on a solid torus has been made in
Braam-Hurtubise [11].

From the description of Z as P(S.), it follows that on Z there exists
a tautological line bundle L, which upon restriction to the fibre over
x € X, equals the negative Hopf bundle on P(S, ). It turns out that L
is naturally holomorphic, and to tie in with the (CP3 S*) case we shall
denote the (—g)-th power of L by 0(qg).

If F > CP? is an instanton bundle on the twistor space of S* then
Atiyah-Ward ansatzes, that is an explicit formula for the instanton on S+,
arise from a suitable description of F as holomorphic bundle. Let s
be a section of F ® O(q) = F(q). Generically s will be nonzero away
from a complex curve C, = Z and give rise to an extension class
e;€ H(Z—C, O(—2q)). Elements of such sheaf cohomology groups cor-
respond to solutions ¢, of linear p.d.e. on open sets of S*: this is the
celebrated Penrose correspondence. Explicit formulas for the instanton, such
as those of 't Hooft, can be constructed in terms of this ¢,. Every
instanton on S* can theoretically be computed in this way. For background
see Atiyah [1].

We shall see that on our manifolds X = (S*—A)/T, for ' # {e}, the
situation is rather different, but that nevertheless in some cases explicit
constructions can be made again. As before attention will only be paid to
S'-invariant instantons, i.e. monopoles. In those cases which we treat in
detail, it will appear that we are essentially summing together a monopole,
much in the same way as automorphic forms are constructed by summing
kernels. It is however quite remarkable that “summing” of solutions is
possible for the non-linear anti-self-duality equations, and may be these
summation procedures are best thought of as a kind of Backlund trans-
formations.

Recall from § 2 and § 3, that X comes with a natural conformal structure,
and that X can be given a metric in the conformal class with constant
scalar curvature Ry. We proved that the majority of X’s give rise to

negative Ry. Assume a spin structure on X has been fixed, then the line
bundle 0(q) above is well defined.
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ProrosiTION 7.1. If Ry < 0, then no monopole on X arises from an
Atiyah-Ward construction, since H%(Z, F(g)) = 0 for all g e Z\{0}.

Proof. For q < 0 any section would vanish on the fibres =~ 1(x), and
hence be zero; this is independent of the sign of Ry. For ¢ > 0, we know
from Hitchin [18], that elements of H%(Z, F(q)) are in one-one corres-

pondence with solutions of the twistor equation on X with coefficients in

15,13 =0
D, = PV :T(SY(S,)QE) - [(S"1(S,)RS _QE),

with S? the g-th symmetric product, Z: A' ® S4S,) - S?71(S,) ® S_ the
projection, and A the anti-self-dual SU(2)-connection on E — X. For these
equations we have a vanishing theorem of Weizenbock type in the case of
negative scalar curvature, see Besse [8]. ]

Hence attention here needs only be paid to the Ry > O manifolds,
which were classified in theorem 3.1. But even here there is a very
fundamental difference between the case X = S% ie. [ = {e}, and the cases
of non-trivial T

On X = §% Z = CP? the dimensions of H%Z, 0)(g)) (and also of the
invariant part H%(Z, 0(q))° ") increase with ¢. Tracing through the (equivariant)
Riemann-Roch formula (as in Hitchin [19]), one learns that the increasing
character is due to the fact that for the fixed point sets S* = P,
S™ = P;{ = Z = CP> we have y(S*) > 0. For I # {e} these Euler charac-
teristics satisfy x(ST) < 0. This leads one to suspect that it may not always
be possible to find sections of F(g), which would be needed to obtain
Atiyah-Ward ansatzes in general.

After all these negative remarks, let us proceed to show that, at least
in some cases, the construction works satisfactorily. To simplify things even
further, we shall assume that X is a manifold with Ry > 0; by theorem 3.1,
X arises from a Schottky group. Consider on X the conformally invariant
Laplacian D, acting on densities of conformal weight 1, with values in
densities of weight 3, which equals

1
DO = d*d +6"Rx.

Since Ry > 0, we get ker D, = 0, and hence unique fundamental solutions ¢,
exist satisfying
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D0'¢x=6x XEX.

Through the twistor correspondence (see Atiyah [3], [1], and Hitchin [18])
¢, corresponds to a cohomology class:

0. € H(Z—n"(x), 0(—2)),

and hence ¢, gives rise to a vector bundle F on Z — n~'(x), which is an
extension:

0->0(-1)->F—->01)—-0.

In fact one can show (Atiyah [3]) that the bundle F extends to a bundle
F on Z, such that F(1) has a holomorphic section vanishing precisely
on n~ !(x). The maximum principle applied to D, ensures that ¢.(y) > O,
for all y € X, and this implies that F is trivial on the real lines © ™ *(x). Since
®, is real, F gets a real structure. Thus F is an instanton bundle.

To get a monopole rather than just an instanton we have to assume
x € S,, the fixed surface in X. The weight m; of a monopole constructed
in this way equals 1, because the Hopf bundle @(1) is of weight 1. The
charge also equals 1.

Obviously the process can be generalized by using a positive linear
combination of k fundamental solutions:

(P:ZXj(ij 7\'j>0> j=1..k,

which is called an ’t Hooft potential. If the x; lie in S; = X, then the
't Hooft potential will be invariant, and it follows that we have created a
monopole of mass 1 and charge k. All positive scalar multiples of ¢ give
the same instanton, so the number of parameters in the solutions is 3k — 1:
we have 2 for every x;€ S, and 1 for every A;. These solutions therefore
don’t give an open set in the 4k — - y(S) dimensional moduli space.

We proceed to identify these potentials ¢. In the course of this, explicit
formulas for the connection 4 will also be given. Besides, a slight generaliza-
tion of the Atiyah-Ward construction will emerge.

Pulling back ¢, to S* — A, under the quotient map, one gets a generalized
function ¢, on S* — A satisfying:

DO(pr = Z 67)}

yell

with y e $* — A mapping to x. Of course the next step is to try to reverse
this and to put:
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71 Gx =DV,
vell

where , is a fundamental solution on S* of D, at y. In the flat metric
on R* = §% fundamental solutions are equal to:

72 W) = @uly—rl) 2.

Since the flat metric is not I'-invariant, conformal weight factors will occur
in 7.1. It is easier to see what happens if one uses the I'-invariant metric
on H3 x S':

t™2dx2+dxi+dt?) + d0*  (xy,x,,t 00 e H® x S!

Under conformal rescaling, 7.2 transforms to the 6-independent summation
kernel of the Eisenstein series on H? (compare Mandouvalos [25]):

E(y, h) = t/[(x;—y1)*+(x;—y2)*+t*] yeR* <= S*, h = (x,x,,t) e H?

Summing, we get for 7.1:

7.3 Ex(y, h) = ). E(y, vh),

vel

which is the Eisenstein series for I', see Mandouvalos [25]. As settled by
Poincar¢ already, 7.3 is convergent if 6(I') < 1, where 6(I') is the Hausdorff
dimension of the limit set A(I') of I'. The groups I' for which this holds
are the cyclic groups and classical Schottky groups (with their defining
circles wide apart, compare Bers [7]). In passing by we note that 6(I') < 1
implies that X is of positive type because the Eisenstein series is a strictly

positive Green’s function for d*d + ¢ R, : the maximum principle implies

R, > 0.
To compute the gauge potentials, it is easiest to go back to the flat
metric on R*. The more general potentials there look like

k
7.4 $(h,0) = 3 Mg+ t™' - Erlxi, ),
i=1

and the formulas of ’t Hooft give for the connection (see Atiyah-Hitchin-
Singer [5])
A=) P, (—1/2dlogpAe;) ® ¢,e T(R*, ATRAY,

with e; an orthonormal, covariantly constant framing of T*R* and A% -
identified with su(2). To see what this looks like, assume that I" is cyclic,
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generated by |: 1} LeR.,. Then

A
Iy

o0 AT n}b i

with y,e R = §2 and reSY\A = R*\{0}.

So we see that for A » A, and 1 < |r|, | y|l <A, the second term
dominates strongly and the monopole will look much like a “grafted
S*-monopole”. On making A smaller, nearby nonlinear interaction makes the
monopole look more complicated.

Finally we discuss a modification of this construction which supplies a few
more solutions. Suppose we put k = 1 and consider the harmonic function:

Gulr) = 2, AT M =y |72

which converges for — 1 < o < 1. Then ¢, Ar) = A% - b (r), so the
instanton is invariant. This results in a 3-parameter family of monopoles.

Now ¢, describes a fundamental solution of the Laplacian acting on
sections of a flat real line bundle with monodromy A* along the non-trivial
loop in H3/T, so we have constructed a bundle F on twistor space, which

is an extension of I(1) by L*(—1), where L is a real flat line bundle in
1
the Picard group of Z with monodromy A2 "“.

The same procedure can be used for Schottky groups I' of genus g, by
twisting the sum with a character I' > R., close to 1. This gives a
3k — 5+ x(S) parameter family of monopoles. This too doesn’t give an open
set in the moduli spaces and it appears that the construction of the general
solution is not yet clear, even in these simple cases.

Possibly this can be remedied by going over to the next Atiyah-Ward
ansatz, which exploits the self-dual Maxwell equations on X. Here the

vanishing sets could be choosen to be elliptic curves corresponding to closed
geodesics in M.
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