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CALABI’S CONJECTURES 115

We extend the summation convention as follows: we will be concerned
only with lower indices. If a letter occurs twice, it refers to a contraction,
which is taken with respect to g or to g’ according to whether the letter
occurs with a bar or with a prime. So,

T ... stands for g¢®T , 5., while

T...a...a’... Stands fOI' g/ aET a..b...

As usual if T, ; is a tensor, further lower indices refer to covariant
differentiation (with respect to g); so,
T, msStands for V,, T, ,, while

T, ., stands for V_7,;1Ta___,

Our indices will be latin letters; greek letters will denote multi-indices.
If o is a multi-index, o will denote the conjugate multi-index (for instance
if & = abc, then o = abc), while | o | denotes its length. We shall say that o

is mixed if 1ts length is at least two and, among the first two letters,
exactly one has a bar.

The notations D, V, V, | ||, were introduced in section 4.

Remark 6.1. Since covariant differentiation (with respect to g) and con-

traction with respect to g’ do not commute, we observe that, for instance,
the difference (recall g'=g+ VVo)

(3) Pag’ap — ((paa’cz)b = Quea Paren

does not vanish.

7. HIGHER ORDER A PRIORI ESTIMATES: GENERALITIES

We want to prove by induction,
ProrosiTiION 7.1. Given n > 4, a sequence (K;),ieN, and a finite
sequence C,, ..., C,_, there exists C, such that:

loll <Co, Vi=0,.,n—3, |DVVe| < Ci,,
and Yie N, | D'Pyo)| < K;,

implies

I D" 2VVo || < C,.
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Actually one needs | D'P,(¢)| < K; only for 0<i<n, hence C,
depends only upon (C,, ..., C,_{, Kq, .., K,).

Hereafter, by “a constant”, we will mean a constant which depends only
upon the given constants (Cy, ..., C,_1, Kg, .., K,)-
et us explain a further convention.

Convention 7.2. We will have to consider sums of tensors obtained via
contractions of tensor polynomials in the variables (g')~ %, VVaq, ..., D'VVao, ... .
The present convention helps describing the variables occuring in (still)
uncontrolled expressions.

First of all, given @ € A, and an integer n > 3, we denote by E,_,
the (finite dimensional complex) vector space generated by all contracted
tensor polynomials, with degree of homogeneity at most 2n, in the variables

(g)"', VVo, DVVe,.,D" 3Ve, DP(¢), i=0 .,n.

In order to prove 7.1, we will compute modulo E, _; .

Given integers p, .., s, all of them > n, we will say that mod. E,_; a
tensor T is “of the form T, /°, whenever mod. E,_; it is a sum of
contractions of tensors

AQDP Vo ® .. ® D" 2VVeg,

where the A’s are in E,_ .

Furthermore for s > n, under the assumptions of 7.1, we will say that
a scalar term T, i1s coercive, if for any other term of the form T
(resp. T ;) there exists a constant C such that:

1

| T.| < C(T,,)? (resp. | Ti,| < CT,,).

We present now three lemmas which illustrate the previous convention.

LEMMA 7.3. Given integers s >=n = 3, the covariant derivative (in
metric g) of a term of the form T, mod.E,_,, is of the form
(Tyr 1+ T5)mod. E,.

Proof. This is just because the derivative D[(g’)” '] is a contracted tensor
polynomial (of degree 3) in (¢')~! and DVVe.

LemmA 7.4. If o and B are two distinct mixed multi-indices of length
(n+2) obtained from each other by permutation, then the difference of
covariant derivatives (@,— @g) is of the form T,mod. E,_,.

I
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Proof. On the Kihler manifold (X,g), commuting two consecutive
covariant derivatives yields curvature terms only if the couple of derivatives
concerned is mixed (for general commutation rules on Riemannian manifolds
see e.g. [21], exposé XI, proposition 3.2). If so, say k and | are the
permuted indices, the result will involve

R%5  (curvature tensor of g)

with p and ¢ of the same type. Explicitely:
Oty — Patkp = Z Rk Pyge
p

for all p,v, 1, such that vpt = Au. Hence the types of all the remaining
non-permuted covariant derivatives ¢, are identically preserved. In particular
if vy and & denote two multi-indices of length n obtained from each other
by permutation, necessarily

(@3, — @i35) is of the form T, mod. E,_, ,

since two mixed derivatives will keep bearing in first place on ¢ in the
process of permutation.

- The proof of lemma 7.4 is therefore reduced to the following two cases
for the multi-indices o and J:

cither o = ijkh, B = kjih, |A| =n—1,
or o = ijklp, B = kliju, lp]l=n—2.
In the first case, one has identically on a Kahler manifold :
¢, — @3 = 0.

In the second case, the same reasoning as above holds for (Py—@g) since
it can be written as

(@7 — Purgip) + (Puiti— Pudiz)
cach of these two commutations being clearly of the form T,mod. E,_,.

Q.E.D.

Remark 7.5. The fact that commutation formulae involve only mixed

derivatives was already a crucial detail in the proofs of the second and
third order a priori estimates.

LEMMA 7.6. The tensor ©.,, where o is a mixed multi-index of length
nois, mod. E,_,, of the form:
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T35+ T, when n = 2,
T4s3+ Tz333:+ T3 when n =3,
Ts+Ty44+ Ty when n = 4,
T,.1+ T, when n > 5.

Proof. The casesn = 2, 3, 4, 5, must be checked bare-handed. There is no
difficulty. Then, for n > 5, one can proceed by induction on n. Indeed assume,

Qaga = Tnwyy + T,mod. E, ;, forsomen = |a|>5.

Recall formula (3) and lemma 7.3; differentiating once the above equality
yields

Paaapr = (.Tn+l+ Tn)b T Quca Parey = Tn+2 + T,,+1 mod. En 5
since | aca | = n + 2. The same is true with b instead of b. Q.E.D.

Remark 7.7. The preceding lemma offers a perspective which brings some
light on the type of difficulties to be expected for carrying out a priori
estimates of each order. In particular, one may anticipate that a special
step should be required for n = 4 (in order to kill the effect of the term
T, 4) ana that the same (simpler) procedure should then apply, arguing by
iteration, for any n > 5.

Notice also that the hardest case appears to be n = 3. Indeed, following
Calabi [8] one must guess the very special coercive functional [1] [24]
S3,3 = Oupc Parper »

perform a careful calculation of A'(S; ;) and use either the Maximum
Principle [24] or a recurrence on LF(dX, ) norms of S5 3 [1]. The approxi-
mate tensor calculus which we may conveniently use hereafter would not be

effective for the case n = 3.

8. A PRIORI ESTIMATES OF ORDER FOUR

¢

In order to prove 7.1 with n = 4, we consider the functional:
S4,4 = Papea Pavea T Pabea Pabed -

It is enough to estimate S, , since it is coercive. Let us compute
—A'(S,, 4). One readily obtains:

~A(S4,4) = Tes + Ts,s (mod. Ej),
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