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L’Enseignement Mathématique, t. 34 (1988), p. 43-67

LE PROBLEME DE GAUSS SUR LE NOMBRE DE CLASSES

par J. OESTERLE

Le texte ci-dessous reproduit une conférence faite le 24 janvier 1987
4 la journée annuelle de la Société Mathématique de France. 1l retrace
Phistoire d’un probléme soulevé par Gauss, relatif a la classification des
formes quadratiques ax® + bxy + cy* a coefficients entiers.

Nous ne nous intéresserons qu'aux formes quadratiques dont le discri-
minant !) A = b? — 4ac est <0; une telle forme garde un signe constant,
et nous nous contenterons d’étudier celles qui sont positives. Pour abréger,
nous dirons simplement forme quadratique pour forme quadratique en deux
variables, a coefficients entiers, de discriminant <O et d valeurs positives.

Lorsqu’on cherche a classifier ces formes quadratiques, il est raisonnable
de les regrouper par classes, deux formes étant dans la méme classe si
elles se déduisent 'une de I'autre par « changement de variables »; il convient
de preciser quels sont les changements de variables que l'on s’autorise:
nous prendrons ici ceux de la forme

(1) (x, y) — (ax+ By, yx+ 6y)

o
avec (Y g) e SL,(Z). Ils forment un groupe engendré par les changements

de variables (x, y) — (x+, y) et (x, y) — (x, x + ).

Deux formes quadratiques appartenant 4 une méme classe sont dites
équivalentes ; elles ont le méme discriminant. Il est dés lors naturel de chercher
a décrire I'ensemble des classes de formes quadratiques de discriminant A,
pour un entier A < 0 donné. Pour que cet ensemble soit non vide, il faut
et 1l suffit que I'on ait

(2) A=0 ou A=1 (mod4).

. 1) Dans la theorie des formes quadratiques, on dit plutét que 4ac — b2 est le
discriminant de ax® + bxy + cy® Nous adoptons ici la convention opposée pour

respecter I'usage en vigueur dans I'étude des équations du second degré et des corps
quadratiques.



44 J. OESTERLE

L’exposé est divisé en deux parties:

Les resultats exposés dans la premiére partie sont dus pour I’essentiel
a Gauss !). On y montre pour commencer quil n’y a quun nombre fini
de classes de formes quadratiques de discriminant A < 0 donné (§1). On
donne un algorithme simple permettant d’obtenir un systéme de représentants
de ces classes, et de calculer le nombre }T(A) de telles classes (§2 et §3).
Une des découvertes fondamentales de Gauss est I’existence d’une structure
de groupe abélien naturelle sur l'ensemble CI(A) des classes de formes
quadratiques primitives de discriminant A (primitives signifie telles que
pged(a, b, ¢) = 1): cette structure de groupe est décrite au § 4; le lien avec
Iarithmétique des corps quadratiques imaginaires est exposé aux §4 et § 5.

En dressant une table des nombres de classes, Gauss constate expéri-
mentalement que ces nombres semblent tendre vers + oo lorsque le discri-
minant tend vers — oo (en satisfaisant a (2)). Il faudra attendre plus de cent ans,
avec les travaux de Heilbronn en 1934, pour voir cette assertion démontrée.
Se pose alors la question de dresser, pour les petites valeurs de h entier
> 1, la liste complete des A < 0 tels que E(A) = h. Cest essentiellement
I’histoire (sans démonstrations) des progres récents obtenus sur cette question
qui fait Pobjet de la seconde partie de Pexpose. Nous expliquerons le role
joué par les courbes elliptiques dans ces progres.

I. LA CLASSIFICATION DE (GAUSS DES FORMES QUADRATIQUES

§ 1. FINITUDE DU NOMBRE DE CLASSES ?)

THEOREME. Soit d wun entier > 1. Il n’y a quun nombre fini de
classes de formes quadratiques de discriminant —d.

Ce théoreme résulte des deux lemmes suivants:

LEMME 1. Toute classe contient une forme quadratique ax* + bxy + cy?
telle que |b| < a < c

1)y C.-F. Gauss, Disquisitiones Arithmeticae, 1801 (Werke, t. I), Section cinquiéme.
(Traduction frang:alse par A.-C.-M. POULLET DELISLE parue en 1807.) Dans cet
ouvrage, Gauss suppose les formes ax® + bxy + cy?* paires, cest- a-dlre telles que b
soit palr Le cas general s’y raméne facilement, en remplagant ax® + bxy + cy?
par 2ax? + 2bxy + 2cy? lorsque b est impair.

%) C.-F. GAuss, Disquisitiones Arithmeticae, n° 174.
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LEMME 2. Il n’y a quun nombre fini de triplets de nombres entiers
(a, b, c) tels que b*> —4ac = —d et |b|<a<c

Démontrons le lemme 1. Soit ax? + bxy + cy* une forme quadratique
appartenant a la classe C considérée. Par hypothese cette forme est positive,
de sorte que a > 0 et ¢ > 0. Les changements de variables (x, y) > (x—¢€y, y)
et (x,y)— (x, y—ex), ou ¢ est le signe de b, ont pour effet de remplacer
(a, b, ¢) par (a, b—2¢a, a+c— b)) et par (a+c—|b|, b—2ec, c). Si donc|b| > a
ou |b| > ¢, on peut remplacer ax® + bxy + cy> par une forme équivalente
pour laquelle la quantité a + c¢ est strictement plus petite. Aprés un nombre
fini de substitutions de ce type, on trouve une forme ax* + bxy + cy”
dans C pour laquelle |b| < a et |b]| < c Cette forme, ou la forme
ex? — bxy + ay? qui sen déduit par le changement de variables (x, y)
— (y, —x), remplit les conditions du lemme 1.

Démontrons le lemme 2. Si (a, b, ¢) sont comme dans Iénoncé de ce
lemme, on a

(3) d = 4ac — b* > 4a? — a* = 3a*,

de sorte que a ne peut prendre quun nombre fini de valeurs; il en est
alors de méme de b et de ¢, puisque | b| < a et ¢ = (b*+d)/4a.

§2. FORMES QUADRATIQUES REDUITES 1)

Dans ce paragraphe, nous montrons comment la théorie de la réduction
de Gauss permet de sélectionner un représentant dans chaque classe C
de formes quadratiques de discriminant —d.

Nous savons déja que C contient une forme quadratique ax® + bxy + cy?
telle que |b| < a < ¢ (lemme 1 du §1). Peut-il y avoir plusieurs formes
de ce type dans C? En fait, la seule autre possible est ax® — bxy + cy?,
lorsquelle est dans C. Ceci vient du fait que | b| est déterminé par a
et ¢ (on a b*—4ac=—d), et que a, ¢ sont caractérisés par le fait que
pour toute forme quadratique g € C, on a

(4) a = inf (g(u)) (u#0 dans Z?);
(5) ac = inf (g(u)g(v))  (u, v non colinéaires dans Z?) .

Il nous suffit en effet de vérifier (4) et (5) pour une seule forme
quadratique g € C, par exemple la forme ax? + bxy + cy? elle-méme. Mais

Y C.-F. Gauss, Disquisitiones Arithmeticae, n® 171 et 172.
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pour celle-ci, on a q(1,0) = a, q(0,1) = c et g(x,y) = ax* — | b || xy| + cy*
> 2a—|b)) | xy | + (c—a)y?*, d’ou

q(xao)>a> si x;éo
©6) g0,y > c, si y#0
qx,y) = Qa—|b)) + (c—a) =a+c—|bl=c st xy#0,

et donc les égalités (4) et (5).
Voyons maintenant dans quels cas la forme ax® — bxy + cy? appartient
a la classe C:

LEMME. Pour que laforme q¢(x,y) = ax* + bxy + cy* (avec |b|<a<c)
soit équivalente a la forme ¢'(x,y) = ax* — bxy + cy?, il faut et il suffit
que lon ait a =|b|,a=c ou b = 0.

On a g(x,y) = g(xty,y) st a= tb, gx,) = ¢y, —x) si a =g,
q(x, y) = q'(x,y) si b = 0. Supposons 0 < | b| < a < c. S’1l existe ( >
€ SL,(Z) tel que q'(x, y) = g(oax+ By, yx+0y), on a q(a, y) = a et g(B, d) = ¢,
d’ou vy = 0 puis B = 0 en appliquant (6), et finalement (:’L E) = + 1, ce

qui est absurde.
L’étude qui précéde nous conduit a adopter la définition suivante:
une forme quadratique ax® + bxy + cy? est dite réduite si 'on a

b <a<c
b>0 s1 aestégala|b|ouac.

Nous avons alors prouvé le théoréme suivant:

THEOREME. Chaque classe de formes quadratiques de discriminant —d
contient une unique forme réduite.

La démonstration du lemme 1 du §1 fournit en fait un algorithme
permettant d’obtenir la forme quadratique réduite équivalente a une forme
donnée.

Exemple. Appliqué a la forme quadratique 9x* + 43xy + 53y? (repré-
sentée par (9, 43, 53) pour abréger), cet algorithme s’écrit

(97 43, 53) ~ (9> 253 19) ~ (99 7) 3) ~ (57 17 3) ~ (39 _13 5)

et 3x2 — xy + 5y? est la forme réduite cherchée.
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§3. UNE METHODE ELEMENTAIRE POUR CALCULER LE NOMBRE DE CLASSES ')

Soit d un entier > 1. D’aprées le § 2, le nombre i?(——d) de classes de formes
quadratiques de discriminant —d est le nombre de formes quadratiques
réeduites de discriminant —d, c’est-a-dire le nombre de triplets (a, b, ¢)
d’entiers vérifiant

b* —4ac = — d
(7) bl <a<c
b>0 si aestégala|b|ouac.

Nous savons déja que ﬁ(—d) est non nul si et seulement si —d est
congru a 0 ou a 1 modulo 4. Les conditions (7) entrainent que a, donc
aussi | b| est majoré par \/c% (§ 1, formule (3)) et que | b| est de méme
parit¢ que d. On en déduit aussitot la formule suivante, permettant de calculer
h(—d):

ProPoOSITION.  Supposons —d congrud O oua 1 modulo 4. On a:

h—d) = Y ) n(a, b)
0<b<+Vd/3 al((b2 +d)/4)
b=d(mod. 2) b<a<+(b2+d)/4

avec n(a,b) =1 silona b=0 ou a=b ou a=./(b*+d)/4, et

n(a, b) = 2 sinon.

Exemple. Calculons }?(—347). On a 10 < /347/3 < 11, d’ou le tableau
sulvant :

b (b* +d)/4 a n(a, b)
1 87 = 3.29 1,3 1,2
3 89 — —

5 93 = 3.31 — —

7 99 = 32.11 9 2

9 107 — —

dont on déduit l;(—347) = 5. Les coefficients des cinq formes réduites se
lisent sur le tableau; ce sont:

(1,1,87), (3,1,29), (3, —1,29), (9,7, 11) et (9, —7, 11).

') C.-F. Gauss, Disquisitiones Arithmeticae, n° 174 et 175.
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L’é¢tude des formes quadratiques se ramene facilement a celle des formes
primitives, c’est-a-dire celles dont les coefficients ont 1 pour plus grand
commun diviseur. En effet, si —d < 0 est congru a 0 ou a 1 modulo 4,
il existe un plus grand entier F tel que —d sécrive —dy F? avec —d,
congru & 0 ou 1 modulo 4. Pour toute classe C de formes quadratiques
de discriminant —d, il existe un diviseur f > 1 de F et une classe C' de
formes quadratiques primitives de discriminant —df ~? tels que C = fC'

Les nombres de classes & et les nombres de classes primitives h sont
donc reliés par 1’égalité
(8) h—d) = » h(—df~?.

fIF

Lorsque F est égal a 1, ce qui équivaut a dire que d n’est pas
divisible par le carré d’un nombre premier impair et est congru a 3 (mod. 4),
a 4 (mod. 16) ou a 8 (mod. 16), on dit que —d est un discriminant

fondamental. Toute forme de discriminant —d est alors primitive et on a
W—d) = h(—ad).

§4. LE GROUPE DES CLASSES })

Cherchant a généraliser la formule classique
(*+y%) (' 24y %) = (xx' = yy)* + (xy +yx)?,

Gauss se demande pour quels couples (g, q') de formes quadratiques, il
existe une forme quadratique g” telle que 'on ait une identité

a(x, y)q'(x', y) = q"(x", y")
ou x” et y” sont des combinaisons linéaires a coefficients entiers de xx/,
xy', yx' et yy'.

Si 'on a une identité du type précédent, et si —d, —d', —d" désignent
les discriminants de ¢, ¢, q", le carré du déterminant de Dapplication
linéaire (x, y) > (x", y") (resp. (X', y') — (x", ¥")) est égal a dq'(x’, y')*/d" (resp.
d'q(x, y)*/d").

Gauss montre que lorsque g et ¢’ sont des formes primitives de méme
discriminant —d, il est possible d’obtenir une identit¢ du type ci-dessus,
avec ¢q” forme primitive de discriminant —d, et

g(x,y) = det((x,y) = (x", "), 4qlx,y) = det((x, ) (x",y").

1Y C.-F. GAuss, Disquisitiones Arithmeticae, n° 234 a 243.
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Il montre de plus que, sous ces conditions, la classe C” de ¢” ne dépend
que des classes C, C' de g, ¢, et que la loi de composition qui a (C, C')
associe C” définit sur 'ensemble Cl(—d) des classes de formes primitives de
discriminant —d une structure de groupe abélien.

De nos jours, on préfére introduire la loi de composition précédente en
interprétant Cl(—d) comme un ensemble de classes d’idéaux fractionnaires
inversibles. Pour cela, introduisons 'ensemble ¢(—d) des nombres complexes

de la forme (u + ivﬁ)/2, ol u et v sont des nombres entiers et
u = vd (mod. 2). C’est un sous-anneau de C, dont le corps des fractions est
K =20+ 0i/d

Un réseau de K est un sous-groupe de K qui admet une base sur Z
formée de deux éléments. On dit qu'un réseau L de K est un O(—d)-idéal
fractionnaire inversible si O(—d) est 'ensemble des o€ K tels que oL < L.
Cela équivaut a dire que L est stable par multiplication par les éléments
de O(—d), et est un O(—d)-module projectif (nécessairement de rang 1)
On vérifie que cela équivaut aussi a l'existence d’un nombre rationnel

A > 0 tel que LL = MO(—d), avec L le réseau conjugu¢ de L. Ce nombre A
est alors noté N(L) et appelé norme de L.

Les O(—d)-idéaux fractionnaires inversibles forment un groupe abélien
pour la loi de composition (L, L') — LL’ (si LL = AO(—d) et L'L = AO(—d),
on a LL'(LL") = A\'O(—d)); son élément neutre est O(—d) et 'opposé de L
est N(L)"'L. Les (O(—d)-idéaux fractionnaires inversibles de la forme
LC(—d) avec Ae K™ sont dits principaux et forment un sous-groupe du
groupe précédent. Le groupe quotient est le groupe des classes de O(—d)-

idéaux fractionnaires inversibles. 11 s’identifie canoniquement au groupe
Pic (0(—d)) des classes de ¢)(—d)-modules projectifs de rang 1.

Etant donné un @(—d)-idéal fractionnaire inversible L, et une base
(0, ;) d’orientation positive de L sur Z, la forme quadratique g(x, y)
= N(L)™' | x0; + yo,|* est a coefficients entiers, primitive et de discri-
minant —d: cela résulte facilement de I’égalité LL = N (L)O(—d). Inversement,
¢tant donnée une forme quadratique ax? + bxy + cy? primitive et de discri-

minant —d, le réscau L de K engendré par a et (b+i\/3)/2 est un
¢(—d)-idéal fractionnaire inversible, car on a LL = a®(—d). On vérifie que
les constructions précédentes définissent par passage au quotient des iso-
morphismes réciproques 'un de lautre entre le groupe des classes de O(— d)-

idéaux fractionnaires inversibles et CI(—d), muni de la structure de groupe
définie par Gauss.
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Lélément neutre de Cl(—d) est la classe de la forme x? + (d/4)y* si
d = 0 (mod. 4), celle de la forme x* + xy + ((d+1)/4)y* si d = 3 (mod. 4).
L’opposé de la classe de ax? + bxy + cy? est celle de ax? — bxy + cy*.
Le lemme du § 2 permet donc de dresser la liste des éléments d’ordre < 2
de Cl(—d) (appelés classes ambigués ou ambiges); le nombre de ces éléments
est 1)
2271 si d#12mod. 16 et d #* 0 mod. 32
9) 2'"?2 si  d=12mod. 16
2 si  d=0mod.32,
ou t est le nombre de diviseurs premiers de d.
Pour calculer le produit des classes de deux formes quadratiques
ax® + bxy + cy?* et ax* + b'xy + c'y* primitives de discriminant —d, on
pose ?)

8 = pged (a, ', (b+1)/2),
on choisit des entiers u, v et w tels que
ua + va' + wb+b>b)/2 = 9§,
et on pose
a’ = ad' /8, b" = [uab' +va'b+wbb' —d)/2]/5, ¢’ = (b"*+d)/4a" .

La forme quadratique a”x? + b"xy + c”"y? est alors a coefficients entiers,
primitive et de discriminant —d, et sa classe est le produit cherché.

En effet, aux classes des deux formes quadratiques données correspondent
les classes des O(—d)-idéaux fractionnaires: L = Za + Z(b—i—i\/a)/Z et

L' = Zad + Z(b’—l—iﬁ)/l L’idéal fractionnaire LL' est engendré par les
quatre ¢léments

ad , (ab' +ai/d)2, (@b+ai/d)2, (bb' —d+i(b+b)./d)/4
et 'on a N(LL) = ad’. On vérifie facilement que ; = (aa’)/0 et

W, = 6(b/’+i\/c§)/2 forment une base de LL' sur Z d’orientation positive

et que Pon a (aa)™!| xw, + yw,|? = a’x* + b’xy + ¢"y?, d’ou le résultat.

Exemple. Le groupe Cl(—347) est cyclique d’ordre 5 (cf. § 3, exemple).
Il est engendré par la classe C de la forme réduite 3x? + xy + 29y? et

1) C.-F. Gauss, Disquisitiones Arithmeticae, n° 257 a 259.

7‘) C.-F. Gauss, Disquisitiones Arithmeticae, n° 242; cf. aussi le n°® 243 pour des -
méthodes plus rapides de calcul du produit.
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2C, 3C, 4C, 5C sont les classes des formes réduites dont les coefficients
sont (9, 7, 11), (9, —7, 11), (3, — 1, 29) et (1, 1, 87) respectivement.

§5. LIEN ENTRE h(—d) ET h(—df?) 1)

Soient —d un discriminant fondamental (cf. §3), et f un entier > 1.
Les nombres de classes primitives h(—df?) et h(—d) sont liés par une formule
simple. Pour I’établir, nous allons définir un homomorphisme de groupes

v: Cl(—df?) — Cl(—d).

C’est dans le langage des idéaux fractionnaires que cet homomorphisme
se définit le plus aisément: a la classe d’un @(—df?)-idéal fractionnaire L,
v fait correspondre la classe de @(—d)L, qui est un O(— d)-idéal fractionnaire.

Pour tout xe O(—d), inversible modulo fO(—d), le réseau xO(—d)
N O(—df?) est un O(—df?)-idéal fractionnaire. L’application qui a4 x associe
la classe de cet idéal définit par passage au quotient un homomorphisme
de groupes

u: (O(—d)/ fO(—ad)* — Cl(—df?).

On démontre (en utilisant le fait que «la donnée d’un réseau équivaut
a celle de ses localisés ») que la suite

(O(—d)/ fO(—d)* > Cl(—df2) 5 Cl(—d) > 0

est exacte, et que le noyau de u est engendré par les classes des entiers
relatifs inversibles modulo f et des unités de O(—d).
Un argument de comptage permet d’en déduire la formule

h(—df?) = h(—dw™ ' f fl; (1—p~ 'x(p)

ou l'on a posé

3 st d=3 et [f>=2
w = 2 st d=4 et f=2
1 sinon,

et ou y deésigne le caractére de Dirichlet quadratique n i+ <:—d> associé
n

Y) C.-F. Gauss, Disquisitiones Arithmeticae, n° 253 a 256.
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au corps Q(\/ —d). On a en particulier si d > 4
(10) h(—df?) = h(—d)o(f)

ou ¢ est la fonction d’Euler.

II. LE PROBLEME DU NOMBRE DE CLASSES

Dans cette partie, nous allons étudier le comportement du nombre de
classes lorsque le discriminant tend vers —oco. Compte tenu des formules (8)
de 1.§3 et (10) de 1.§5, il est légitime de restreindre notre étude aux
discriminants fondamentaux (cf. 1. § 3). Dans toute la suite, —d sera un tel
discriminant: on aura donc PT(—d) = h(—d).

Dans les derniers numéros de son expos¢ de la classification des formes
quadratiques, Gauss émet quelques observations concernant les tables de
nombres de classes (il avait constitué lui-méme de telles tables, en particulier
pour d < 3000); il qualifie de surprenante 'observation suivante!): pour
chaque entier h > 1, il semble n’y avoir quun nombre fini de d tels que
h(—d) = h. Ainsi, pour h = 1, ne trouve-t-il dans sa table que les neuf
discriminants fondamentaux

-3, —4, -7, =8, —11, —19, —43, —67, —163

(et en outre les quatre discriminants non fondamentaux — 12, — 16, —27, —28).

Comme nous l'avons dit dans lintroduction, Heilbronn %) en 1934 a
démontré que, conformément a Pobservation de Gauss, on a bien
(11) lim h(—d) = +o0.

d—

Des tables étendues de nombres de classes ont été construites par
ordinateur. Buell °) par exemple a publié les valeurs de h(—d) pour
d < 4000000. Parmi les discriminants fondamentaux satisfaisant a cette
inégalité, le nombre de ceux pour lesquels h(—d) est égal a 1, 2, 3, 4, 5, 6,
7, 8, 9, 10 est respectivement 9, 18, 16, 54, 25, 51, 31, 131, 34, 87, et

1Y C.-F. Gauss, Disquisitiones Arithmeticae, n° 303.

2) H. HEILBRONN, On the class numbers in imaginary quadratic fields, Quarterly
J. of Math. (Oxford), 5 (1934), 150-160.

%) D. A. BUELL, Small class numbers and extreme values of L-functions of quadratic
fields, Math. of Comp. 31 (1977), 786-796.
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le plus grand d correspondant est respectivement 163, 427, 907, 1555,
2683, 3763, 5923, 6307, 10627, 13843. |

Cela semble suggérer que tous les discriminants fondamentaux —d pour
lesquels h(—d) < 10 figurent dans la table de Buell. Peut-on le prouver?
Cest & ce type de question qu’est consacrée la fin de 'exposé. On s’intéresse
a ce probléme car les discriminants pour lesquels h(—d) est petit possedent
comme nous le verrons des propriétés arithmétiques remarquables. Nous
allons commencer par décrire les deux outils essentiels pour I’étude de
h(—d), a savoir les nombres de représentations des entiers par les formes
quadratiques et les fonctions z€ta associées.

Les formes quadratiques de discriminant —3 et —4 ont des automor-
phismes distincts de +1 dans SL,(Z). Pour éviter les complications

techniques qui en résultent, nous supposerons dans la suite d # 3 et d # 4
(donc d=17).

§ 1. REPRESENTATION DES ENTIERS PAR LES FORMES QUADRATIQUES

Soit g une forme quadratique de discriminant —d (distinct de —3 et
—4). Le nombre de représentaticns primitives d’un entier n > 1 par g,
compteées au signe pres, est

(12) r(q) = %Card {w,v)eZ?| qu,v) = n et pged(u,v) = 1}.

Ce nombre ne dépend que de la classe C de la forme quadratique
g, et on le note aussi r,(C). Soit ax® 4+ bxy + cy? la forme réduite appar-
tenant & C. On a 3a®> < 4ac — b* < 4c* (inégalité est stricte car d # 4),

dou a < \/d/3 et ¢ > \/E/Z. On ar, (C)#0,etsinz=1estun entier <c

tel que ,(C) # 0, on a nécessairement n = a et r,(C) = 1 (L. § 2, formule (6)).
On en déduit |

(13) Y mnO<1< Y 0.
n<Vdj2 n<vd/3
Introduisons le nombre total des représentations primitives, comptées au

signe prés, de l'entier n par les différentes classes de formes quadratiques
de discriminant —d:

(14) r(—d) = Y r(C).

CeCl(—ad)
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On déduit de (13) un encadrement du nombre de classes

(15) Y, T{—d) <h-d)< ) r(-d,
n<vJd/2 n<vd/3
ce qui montre que I’¢tude de h(—d) est liée a celle des nombres r,(—d).
Il n’existe 4 ma connaissance aucune formule simple permettant pour une
classe C donnée de calculer r,(C). Par contre, Gauss a obtenu le résultat
remarquable suivant *):

THEOREME. Pour tout entier n > 1,r,(—d) est le nombre de b (mod. 2n)
tels que b* = —d (mod. 4n).

La démonstration de Gauss est trés élégante: Soit (¢;) un systeme de
représentants des classes de formes quadratiques de discriminant —d. Si b
est un entier tel que b? sécrive —d + 4nc, la forme quadratique nx?
+ bxy + cy* a pour discriminant —d et s’écrit g;(ux+wy, vx+ty) pour un

. P : : u w
unique indice i et une certaine matrice ( . ) € SL,(Z). On a g;(u, v) = n,

v
et (u, v) est déterminé au signe pres par b (mod. 2n) car I et —I sont
les seuls automorphismes de g; dans SL,(Z). Inversement, chaque représen-
tation primitive de n par l'une des formes g; s’obtient par ce procédé a
partir d’'un unique b (mod. 2n) tel que b?> = —d (mod. 4n).

En décomposant Z/4nZ en ses composantes primaires, on obtient la forme
équivalente suivante de I’énoncé précédent:

COROLLAIRE. Pour que r,(—d) # 0, il faut et il suffit que n soit de la
forme d'p* ..p,™, avec d un diviseur de d sans facteurs carrés,

Pi> s Pm des nombres premiers deux a deux distincts modulo lesquels —d
est un carré non nul, et oy,..,o, des entiers =1. On a alors
r(—d) = 2™

De la formule (15) et du corollaire ci-dessus, on peut retenir le principe
suivant:

PRINCIPE. Si d est grand et h(—d) est petit, il y a peu de petits
entiers n qui soient représentés par une forme quadratique de discriminant
—d, et peu de petits nombres premiers modulo lesquels —d est un carré.

Illustrons ceci dans le cas particulier ou d = 163. On a h(—163) = 1
et x2 + xy + 41y est la seule forme quadratique réduite de discriminant

1y C.-F. Gauss, Disquisitiones Arithmeticae, n° 167, 168 et 180.
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-—163. D’aprés le début de ce paragraphe, on a r,(—163) = 0 pour
2 < n < 40. Par suite, —163 n’est un carré modulo aucun des nombres
premiers < 39, et le corollaire au théoréme ci-dessus implique que si
r(—163) # 0 et n < 412, nécessairement n est premier. Ceci explique
pourquoi la suite (découverte par Euler): 41, 43, 47, 53, 61, .., formée
par les valeurs de x? + x + 41 pour x > 0 ne comporte que des nombres
premiers jusqu’a 1601 (=392 +39+41).

§ 2. FONCTIONS ZETA

Il est fructueux de réinterpréter les résultats du paragraphe précédent
en introduisant des séries de Dirichlet génératrices: pour toute forme qua-
dratique g de discriminant —d, la série de Dirichlet

1 _
(16) Ugq, s) = 5 Y qlu, v)~*
(u,v)eZz-{(0,0)}

converge absolument pour Re(s) > 1 et 'on a

(17 a.9) = 429 3. nlan

e.9]

ou {(s) = ) n~* est la fonction zéta de Riemann. Comme (g, s) ne dépend

n=1

que de la classe C de g, on I’écrit aussi {(C, s).
La fonction {(g, 5) jouit de remarquables propriétés analytiques: la fonction

(18) Mg, s) = 24*2m) ~*T(s)K(g, 5)

admet un prolongement méromorphe a C, avec pour seuls poles des poles
simples en 0 et 1 de résidus —1 et 1, et vérifie Péquation fonctionnelle
Alg, 1 —s) = A(q, ). En effet, la fonction théta

(19) 6g,t) = > exp(—qn, m)27tt/ﬂ)

(n,m)e Z2

satisfait d’apres la formule sommatoire de Poisson a I’équation fonctionnelle
(20) 0(g, t7%) = 16(q, 1) ;

on a, par échange de la somme et de l'intégrale,

(21) Alg, 5) = JOO [0(g. )—1] ¢ dt,
0
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et 'on en deéduit Pexpression suivante de A(g, s), sur laquelle le prolongement
meromorphe, les pdles et leurs résidus, et 'équation fonctionnelle sont évidents

1
s(s—1)

(22) A(g, s) = + J [0(g, ) —1] (£~ L+t %)dr .

1

Soit K le corps quadratique imaginaire Q + Qiﬁ. On peut deduire du
dictionnaire entre formes quadratiques de discriminant —d et O(—d)-idéaux
fractionnaires (I., § 4) que I'on a

23) W) = Y UCH) =19 Y n(—dn

CeCl(—d)

S

ou (x est la fonction zéta du corps K (définie par (g(s) = )., Na™% ou a
parcourt 'ensemble des idéaux non nuls de 'anneau ((—d). Cette fonction
Cx jouit de propriétés analytiques analogues a celles des fonctions {(C, s):
en particulier, d’aprés ce qui précéde, elle a un podle simple en 1 de résidu

(24) .~ Res,_; (gls) = md~Y2h(—d).

Cette formule joue un role fondamental pour I'étude de h(—d) par voie
analytique.

Notons ¢ le caractére de Dirichlet n+— (——) Le théoréme de Gauss
n

du § 2, ou plutot son corollaire, traduit alors I'égalité entre séries de Dirichlet

0 1 —-s

ou encore, compte tenu de (24), 'égalité
(26) Ck(s) = C(s)Lx, s)

S

ot L(y,s) est la série de Dirichlet ) x(njn~°. Cette égalité équivaut & la
n=1

décomposition de (g en produit eulérien, décomposition que 'on prouve de
nos jours directement en utilisant la factorisation des idéaux dans 'anneau
de Dedekind O(—d).

En utilisant (25) et (26), nous allons reformuler le principe énoncé a la fin
du paragraphe précédent.

PRINCIPE. Supposons d grand et h(—d) petit. Alors,ona y(p) = —1
pour la plupart des petits nombres premiers p. Si A:N — {0} - {—1,1}
est la fonction qui a un produit de r nombres premiers (non nécessairement
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distincts) associe (—1), on a Mn) = y(n) pour la plupart des petits
nombres entiers n. La fonction (g(s) doit ressembler a la fonction {(2s).

Ces énoncés sont volontairement. vagues. Les rendre précis est souvent le
nceud des démonstrations de minorations de h(—d) lorsque d tend vers oo.

§3. CE QUE L'ON ESPERE SUR LE COMPORTEMENT DE h(—d)

On peut montrer que en moyenne (en un sens qui demande a étre
précisé, ce que je ne ferai pas ici), h(—d) est équivalent a une constante

non nulle fois ﬁ ; déja Gauss connaissait ce type de résultat ).

Il n’est pas vrai par contre que 3’1(—d)/\/3 admette un minorant > 0O
ou un majorant lorsque d tend vers +o00: on sait par exemple que

h(—d)/(\/c‘i log log d) ne tend pas vers 0 et que h(—d)loglog d/\/(} ne tend
pas vers + oo lorsque d tend vers + co.
On obtient cependant de fagon élémentaire des majorations raisonnables

: . 1
de h(—d) (raisonnable signifiant avec I’exposant 3 que Pon attend pour d),

de la forme h(—d) < Cﬁ log d. Par exemple:

PROPOSITION. On a pour d > 4

27) h(—d) < ' /dlogd.

Compte tenu de (24) et (26), il revient au méme de montrer que l'on a,

en posant y(n) = (j)

n

Y umyn < logd.
n=1

Or, pour tout nombre réel x > 0, la somme M(x) = Zn<x x(n) est majorée
par N(x) = inf ([x], [(d—1)/2]), et I'on a donc, en intégrant par parties

50 _ r AM(x) _ F M), F NGO

n - X ;X . x?

:rdN(x): Y 1n<logd.

- X n<[(d—1)/2]

') C.-F. Gauss, Disquisitiones Arithmeticae, n°® 302.
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Il est possible d’obtenir des minorations raisonnables de h(—d) si l'on
admet I'hypothése de Riemann généralisée. Ainsi par exemple, en suivant une
démonstration de Hecke, publiée par Landau '), on obtient:

PRrROPOSITION. Si la fonction zéta Cyx du corps K = Q + Qi\/g
nwadmet aucun zéro réel > 1 — (2/logd), on a

(28) h(—d) > éﬂ/logd.

Soit o € ]1/2, 1[ tel que (g ne s’annule pas dans I'intervalle Jo, 1[. On a
alors (x(o) < 0, c’est-a-dire ), W A(C, o) < 0 (formule (23)). Or il résulte
de la formule (22) que A(C, o) + (ol —a))™" est positif pour toute classe

w —

C € Cl(—d), et méme supérieur a 2 J e~ ZMMNd(ir=1 4 =9t Jorsque C est la
1

classe neutre. On a par conséquent

e o]

W—d) > 2o¢(1—a)J e~ 2= 1 4 = ugy

1

Le second membre de (28) est majoré par 1 pour d < 800, par 2 pour
d < 5000, par 3 pour d < 15000. II nous suffit donc de démontrer la
proposition pour d > 15000. Prenons alors o égal a 1 — (2/log d); remarquons
que

© _ 6 _ _
J e—zm/«/dtwdt > J e_zm/‘/dt_ldt > e—lZn/x/d log 6 > 1’ 3>
1 1

1 1 _
1o = J t*"dt > J e~ 2miNdE=1ge

(0] 0O
d’ou
h(—d) > 2oc(1—oc)f e 2= g — 20(1 —a) (/d/2n)T(a) .
‘ 0

. 1 ,
L’application x +— x(2m)” *I'(x) étant décroissante sur }5, 1[, on en déduit

1Y E. LANDAU, Uber die Klassenzahl imagindr-quadratischer Zahlkérper, Gottingen
Nachrichten (1918), 285-295.

D
H
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1 , 2
W—d) > ;c—(l—oc)d/ = —T—C;(\/E/log d).

Si nous sommes entrés dans les détails de cette démonstration, cest
pour bien illustrer les deux points suivants:

1) Nous voyons a l'eeuvre le principe général énonce a la fin du §2,
qui dit que si d est grand et h(—d) est petit, Cg(s) doit ressembler a
((2s): en effet {x(s) admet un pole en 1, alors que {(2s) est holomorphe

1 : . n
pour Re(s) > 5; mais si d est grand et h(—d) petit, 'existence du pdle

pour {y doit &tre contrebalancée par 'existence d’'un zéro de (g proche de 1,
d’apreés la proposition ci-dessus.

2) Si 'hypothése de Riemann généralisée était démontrée, les questions
posées dans lintroduction de cette deuxiéme partie seraient résolues: ainsi
par exemple il résulterait de la proposition que tous les discriminants fon-
damentaux —d pour lesquels h(—d) < 30 figurent dans la table de Buell

§4. MINORATIONS NON EFFECTIVES DE h(—d)

Comme nous lavons vu au paragraphe précédent, h(—d) est grand
: . —d

lorsque d est grand et que la fonction L(y,, s), ou yu(n) = (——), n’a pas
n

de zéro voisin de 1. Supposons alors que h(—d) et h(—d') soient petits
pour deux grandes valeurs de d et d' (en un sens que I'on peut préciser,
ce que je ne ferai pas ici). Les fonctions L(yx,,s) et L(ys,,s) ont alors
chacune un zéro voisin de 1, et 'on en déduit que la fonction zéta du

corps biquadratique Q[iﬂ, iV/E] a deux zeros voisins de 1. Des estimées
¢léementaires permettent d’en déduire une contradiction. Cette méthode montre
que h(—d) ne peut étre petit que pour au plus un grand d. Elle est une
variante de celle utilisée par Heilbronn pour montrer que

(29) lim W(—d) = oo,

d—

et a été utilisée par Siegel ') pour préciser a quelle allure h(—d) tend
vers +o00: Siegel montre que pour tout € > 0, il existe un entier d(g)

tel que: h(—d) = ﬁl_s pour d > d(e).

1 2y .
) C. L. SieGeL, Uber die Cl hl quadratisch Bk érper : .
(1936), 83-86. ie Classenzahl quadratischer Zahlkorper, Acta Arithmetica 1
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Il n’est malheureusement pas possible de calculer d(g) car cet entier dépend
de ’hypothétique grand discriminant exceptionnel pour lequel h(—d) serait
petit.

On peut cependant obtenir par les meéthodes précédentes un énoncé
« effectif & au plus une exception prés». Cela a été fait par Tatuzawa ')
en explicitant les constantes dans la démonstration de Siegel: si 0 < ¢ < >
on a

0,655 X_,
ed?

(30) h(—d) >
T

pour d > sup (e, e'*>%) a4 au plus une exception prés. On en déduit par

exemple, en prenant € = 1/15, que tous les discriminants fondamentaux —d
pour lesquels h(—d) < 10, a au plus une exception pres, figurent dans .a table
de Buell et par suite sont de valeur absolue < 13843.

§5. Lescas h=1©Er h=27%

D’aprés le paragraphe précédent, il existe au plus un discriminant
fondamental —d tel que h(—d) = 1 et qui ne figure pas parmi les neuf
déja connus de Gauss. La question de savoir si un tel d existe est restée
longtemps ouverte et est devenue celebre sous le nom de probleme du
dixieme discriminant (ou du dixiéme corps quadratique imaginaire).

En 1952, Heegner publie une preuve de la non-existence du dixiéme
discriminant reposant sur la théorie des formes modulaires, mais cette preuve
fut jugée incomplete a 'époque.

En 1966, Stark et Baker prouvent indépendamment la non-existence du
dixieme discriminant. Dans sa preuve, Stark ramene ce probléme a la déter-
mination des solutions entiéres des équations 8x® + 1 = y?et x® + 1 = 2y2
Ces équations apparaissent déja dans le travail de Heegner. En fait, deux ans
plus tard, Stark et Birch reprennent en détail les arguments de Heegner et
montrent la validité de sa démonstration.

La méthode de Baker utilise les minorations effectives de formes linéaires
en logarithmes de nombres algébriques. Elle a lavantage de s’étendre au
probléme du nombre de classes 2, et a permis a Baker et Stark de majorer

1) T. TaATUZAWA, On a theorem of Siegel, Jap. J. of Math., 21 (1951), 163-178.

2) Pour un exposé plus détaillé des questions abordées dans ce paragraphe, avec
références bibliographiques, on pourra consulter par exemple l'expos¢ de M. Wald-
schmidt au Séminaire de Théorie des nombres de Paris en 1973 (exposé 12).
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de fagon effective les d pour lesquels h(—d) = 2; les bornes obtenues sont
trés grandes (Stark obtient par exemple | d | < 10*1°°), mais Stark d’une part,
Montgomery et Weinberger de l'autre, ont mis au point des méthodes qui
permettent par un calcul sur ordinateur utilisant les zéros de la fonction
zéta de Riemann (pour Stark) ou de séries L(x,s) (pour Montgomery et
Weinberger) de vérifier que, en dessous des bornes précédentes, tous les d
pour lesquels h(—d) = 2 sont < 427.

Pour linstant, aucune des méthodes précédentes n’a pu étre appliquée
au probléme du nombre de classes h pour h > 3.

§ 6. COURBES ELLIPTIQUES ET FONCTIONS L

Nous allons maintenant parler un peu des courbes elliptiques, car elles
jouent un role fondamental dans la suite de 'histoire du probléme de Gauss.
Considérons une équation de la forme

(W) Y+ agxy 4 azy = x* + apx® + azx + ag,

ou les a; sont dans Q. La cubique projective E définie par l'équation
homogéne associée a un unique point a linfini 0. Lorsque E est non
singuliére, on dit que E (ou plutét que le couple (E,0)) est une courbe
elliptique définie sur Q, et que (W) en est une équation de Weierstrass. Un
changement de variables

(C) x =ux +r
y=uy +sx'+t (ur,s,tdans Q, u0)

conduit a une autre équation de Weierstrass (W’) de E. On dit que
équation (W) est minimale si les coefficients a; sont entiers et si les équations
(W') déduites de (W) par un changement de variables (C) avec u,r, s, t
entiers et u # =+ 1, ne sont pas a coefficients entiers.

Une courbe elliptique E définie sur Q admet une équation minimale et
toute autre équation minimale s’en déduit par un changement de variables
(C)avecu = + letr, s, t dans Z.

Supposons désormais (W) minimale. Si I’on pose
X = x + (a,;*/12) + (a,/3)
Y =y 4+ (a1/2)x + (a3/2),

Iéquation (W) sécrit Y2 = X3 — (c,/48)X — (ce/864). Un calcul élémentaire
montre que cy,cs et A = (c,°>—c6?)/1728 sexpriment comme polyndomes
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universels a coefficients entiers en a,, a,, a3, a4, dg, donc sont entiers. Ces
entiers ne dépendent pas du choix de (W), mais seulement de la courbe
elliptique. On dit que A est le discriminant minimal de E.

Soit E(Q) lensemble des points rationnels de E (ie. les solutions
(x, y) € Q% de P'équation (W), auxquelles on ajoute le point a Iinfini 0).
Il existe une unique structure de groupe abélien sur E(Q), d’élément neutre 0,
pour laquelle trois points de E(Q) ont une somme nulle si et seulement si
ce sont les points d’intersection (avec multiplicités) de E et d’une droite
du plan projectif.

Pour obtenir des informations sur les solutions rationnelles de I’équation
(W), on est amené a étudier le groupe E(Q). Je pense qu’il n’est pas exagére
de prétendre que la majeure partie des travaux effectués et des notions
introduites dans la théorie des courbes elliptiques ont pour but ultime de
décrire E(Q). Un théoréme important dans cette direction est le théoréme de
Mordell-Weil: le groupe E(Q) est de type fini, et est par suite isomorphe a
F x Z" ou F est un groupe fini et r un entier > 0 (que nous appellerons
le rang de E(Q)). On a des informations précises sur F a la suite de
travaux de Mazur (par exemple, on sait que F est d’ordre < 16); par contre,
r reste pour I'instant mystérieux (on ne sait méme pas s’il peut prendre des
valeurs arbitrairement grandes, bien que l'on pense que tel est le cas).

Comme les coefficients de ’équation (W) sont entiers, on peut réduire cette
équation modulo un nombre premier p, puis compter le nombre de ses
solutions (x, y) dans (Z/pZ)*. Ce nombre ne dépend pas du choix de (W),
mais seulement de E. D’apres un théoréme de Hasse, il est de la forme
p — a, ou a, satisfait a I'inégalité

(31) la,| <2/p.

La fonction L de Hasse-Weil associée a la courbe elliptique est par
définition la série de Dirichlet

(32) Les) = [[A—ap™)~ ' [] A—ap™+p* 27",

rlA ptA

Ce produit converge pour Re(s) > 3/2 d’apres (31). Un cas particulier de
conjectures générales sur les fonctions L associées a des variétés algébriques
est:

CONJECTURE 1. La fonction Ag(s) = (2m) T (s)Lg(s) admet un prolon-
gement holomorphe a C, borné dans toute bande verticale, et il existe
ep€{—1,1} et un entier Ng > 1 tels que Ap2—s) = egNg° "Ag(s).
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w . . 7
Posons Lg(s) = Y a,n * et deéfinissons sur le demi-plan de Poincare

n=1

{te C|Im(t) > 0} une fonction fg par

o0

(33) fi®) = ) ae™.

n=1

La théorie de Hecke, qui s’appuie sur la transformation de Mellin
Ag(s) = j feliy) y*~'dy, permet de montrer I’équivalence entre la conjec-
0
ture 1 et la suivante:

CoNIECTURE 1. Il existe ege{—1,1} etunentier Ng > 1 (les mémes
qwavant ) tels que  fi(—1/Ngt) = —epNgt* fi(v).
On dispose de conjectures étendant la conjecture 1 aux séries Lg(x, s)

= 3 ay(mn*, avec y caractére de Dirichlet. Généralisant le travail de

n=1
Hecke, Weil }) a montré que ces conjectures pour tous les y (ou méme
seulement pour une famille assez grande de y) équivalent a la suivante sur fe:

CONJECTURE 2 (Taniyama-Weil) 2). La fonction fg satisfait a la
conjecture 1’ et est une forme modulaire parabolique de poids 2 pour
[o(Ng).

[La derniére assertion signifie que fg((at+b)/(ct+d)) = (ct+d)*f(1) si

c d
telles que N divise ¢, et que la fonction T+ f(tr) Im t est bornée sur le
demi-plan de Poincaré.]

Une courbe elliptique E définie sur Q qui satisfait a la conjecture 2
est appelée courbe elliptique modulaire ou courbe de Weil. On sait que si la
courbe E est a multiplications complexes, elle est de Weil. D’autre part,
étant donnée une courbe elliptique E, il existe des algorithmes permettant
de déterminer si elle est ou non une courbe de Weil. Cela a été appliqué
a de nombreux exemples et toutes les courbes elliptiques étudiées se sont
averées étre des courbes de Weil, conformément aux conjectures.

a b _ :
( ) appartient au sous-groupe ['o(Ng) de SL,(Z) formé par les matrices

1Y A. WEIL, Uber die Bestimmung Dirichletscher Reihen durch Funktionalgleichungen,
Math. Ann. 168 (1967), 149-156.

’} Lorsque cette conjecture est satisfaite, f; est une newform au sens d’Atkin-
Lehner, d’aprés un théoreme de W. Li; P'entier N est le conducteur géométrique de
la_courbe elliptique E, d’aprés un théoréme de Carayol; en particulier, les facteurs
premiers de N sont les mémes que ceux du discriminant minimal de E.
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Birch et Swinnerton-Dyer ont émis une .autre conjecture, stupéfiante car
elle relie la fonction L, définie & partir des nombres de solutions de
I'’équation (W) sur les corps finis, au rang r de E(Q) qui fournit une
information sur les solutions rationnelles de '’équation (). Cette conjecture
suppose implicitement la conjecture 1 satisfaite :

CoNJECTURE 3 (Birch et Swinnerton-Dyer). Le rang r de E(Q) est
égal a lordre du zéro de la fonction Lz au point 1.

(Birch et Swinnerton-Dyer donnent en outre une expression conjecturale
de lim (s— 1) Lg(s).)

s—>1

§ 7. LE THEOREME DE GOLDFELD

Un pas décisif vers la solution effective du probléme du nombre de classes
a ¢té franchi par Goldfeld en 1976. L’idée a la base de son travail est
la suivante: Supposons que nous connaissions une série de Dirichlet
% —d
Y. a,n~* telle que pour tout caractére de Dirichlet x: n+— <—> avec —d

n=1 n
[0.6)]

discriminant fondamental, la séric ) a,x(n)n”° ait un comportement ana-

n=1
lytique tres difféerent de la série i a,Mn)n° ou A est la fonction multi-
n=1

plicative introduite a la fin de II, §2. On peut alors espérer d’apres le
principe de II, §2, montrer de fagon effective que lorsque d est grand,
h(—d) ne peut étre petit.

De fait, Goldfeld montre !) quil suffit de connaitre une seule courbe
elliptique E définie sur Q telle que

— E soit une courbe de Weil ;
— la fonction Lj ait un zéro au moins triple au point 1,

et d’appliquer l'idée précédente a la série de Dirichlet L, pour obtenir
des minorations effectives de nombres de classes. Celles-ci sont bien moins
bonnes que celles que donne I'hypothése de Riemann généralisee (cf. § 3):

1) D. M. GoOLDFELD, The conjecture of Birch and Swinnerton-Dyer and the class
number of quadratic fields, Journées Arithmétiques de Caen, Astérisque 41-42 (1977),
219-227.
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on obtient par exemple !) pour h(—d) impair une inégalit¢ de la forme
(34) h(—d) = cglogd

ol cy est une constante dépendant de la courbe elliptique E choisie, et
susceptible d’étre calculée. (Plus généralement, si h(—d) est de la forme 2'A’
avec h' impair, on a une inégalité analogue a (34) a condition de remplacer
¢ par une nouvelle constante cg(t) qui dépend de ¢, par exemple cgt)

= cze” 3V, et de supposer d premier & Nj; cette derniére condition peut

méme étre omise si ’on choisit E convenablement comme ’ont remarqué Gross
et Zagier.)

Comment trouver E remplissant les deux conditions énoncées ci-dessus?
On commence par choisir une courbe elliptique E telle que le groupe E(Q)
ait un rang impair r > 3 (il y en a une infinit¢ et on peut en expliciter
a volonté). On vérifie quelle est de Weil (soit parce qu’elle est a multi-
plications complexes, soit par un calcul sur ordinateur) et que le signe g5 de
Péquation fonctionnelle de Ly est —1 (par le calcul). La fonction Ly a alors
un zéro d’ordre p impair en 1, et si I'on croit en la conjecture de Birch et
Swinnerton-Dyer, p doit étre égal a r, donc > 3. Malheureusement, cette
conjecture n’est pas démontrée. Peut-on s’en passer et dans le cas particulier
choisi, prouver directement I'inégalité p > 3? Puisque p est impair, cela
revient @ montrer que Li(1) = 0. Il est possible d’obtenir par calcul sur ordi-
nateur des valeurs approchées de Ly(1), mais a priori méme si celles-ci sont
treés petites on ne peut conclure 4 la nullité de Li(1).

Il a fallu attendre 1983 et les travaux de Gross et Zagier pour arriver
enfin a surmonter cette difficulté et a appliquer le théoréme de Goldfeld.

§ 8. LE THEOREME DE GROSS ET ZAGIER

Soit E une courbe elliptique définie sur Q et soit P e E(Q) un point
rationnel de E. Ecrivons l'abscisse x(n(P)) du point P + .. + P (n termes,
la somme étant calculée dans le groupe E(Q)) sous forme d’une fraction

., ) 1
irreductible a,/b,. On montre que I'expression 5 n~? log (sup (la,, |b,|)) a une

limite A(P) lorsque P tend vers + oo, appelée hauteur de Néron-Tate de P.

') Cette inégalité, un peu meilleure que celle de Goldfeld, est prouvée par la méme

methode dans mon exposé sur la question au Séminaire Bourbaki (Juin 1984
expose 631). ’
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L’application P +— ﬁ(P) de E(Q) dans R est quadratique et positive, et 'on a
fz(P) = 0 s1 et seulement si P est un point de torsion du groupe E(Q).

Gross et Zagier ont obtenu en 1983 un trés beau théoréme ') qui donne
une expression de la dérivée en 1 de certaines fonctions L associées a des
formes modulaires. Exposons simplement le cas particulier de ce théoréme
qui nous intéresse pour le probléme du nombre de classes: considérons
comme au §7 une courbe elliptique E de Weil, telle que le signe &g
de léquation fonctionnelle Ly soit —1, et notons f la forme modulaire
associee (§ 6); 1l existe alors une constante réelle calculable non nulle cg
telle que:

Pour tout caractére de Dirichlet quadratique impair 7y de conducteur
d>7 tel que y(Ng) = 1, il existe un point P e E(Q) tel que

Ly(1)Lg(x, 1) = cgh(P).

Ce théoreme peut étre utilisé pour résoudre le probleme laissé en suspens
au paragraphe précédent, a savoir verifier si Li(l) = 0: pour cela, on
choisit un caractére de Dirichlet ¥ comme ci-dessus pour lequel Lg(y, 1) # 0
(ceci est toujours possible, d’apres un théoreme de Waldspurger, et on trouve
facilement un tel y lorsque E est choisie). Comme on dispose de majorations
de Lg(y, 1), de la valeur approchée de cp et de minorations des E(P) non
nuls lorsque P décrit E(Q), il suffit alors pour conclure a la nullit¢ de
Li(1) de montrer que Lx(1) est assez petit, ce quun calcul sur ordinateur
permet de faire.

§9. CONCLUSION

Gross et Zagier ont verifie que la courbe elliptique d’¢équation (minimale):
y2 +y = x> — x* — 450823x + 112971139

satisfait aux exigences du § 6. En calculant la constante cy correspondante
(cf. pour cela mon exposé au Séminaire Bourbaki), on obtient

W—d) = 3 = logd < 21000

hW—d) = 4 = logd < 336000

W—d) = 5 = logd < 35000
=

etc. W—d) = 6 = logd < 168000

1Y B.H. Gross et D.B. ZAGIER, Heegner points and derivatives of L-series,
Inv. Math. 84 (1986), 225-320.

i
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D’autres courbes elliptiques de Weil E telles que E(Q) soit de rang 3,
trouvées par Mestre,

yVV+y=x>—x+6 (Np=16811)
2 +y = x> — 19x + 30 (Np=43669),

permettent d’obtenir de meilleures majorations:

h(—d) = 3 = logd < 165
W—d) =4 = logd < 2640
hW(—d) =5 = logd < 275
W—d) = 6 = logd <1320

etc.

Pour achever completement de résoudre le probleme du nombre de
classes, il reste en fait a vérifier quen-dessous des bornes précédentes
les seuls d pour lesquels h(—d) vaut 3, 4, 5, 6, etc. sont ceux qui figurent
dans la table de Buell. Il devrait étre possible de le faire en reprenant les
calculs de Stark et Montgomery-Weinberger évoqués au § 5. Pour l'instant,
cela n’a été fait que pour h = 3 (par Montgomery et Weinberger), et pour
h = 4 (par Arno).

(Regu le 30 mars 1987 )

J. Oesterle

Université Paris VI
UER Mathématiques
4, place Jussieu
75230 Paris Cedex 05
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