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L'Enseignement Mathématique, t. 34 (1988), p. 43-67

LE PROBLÈME DE GAUSS SUR LE NOMBRE DE CLASSES

Le texte ci-dessous reproduit une conférence faite le 24 janvier 1987

à la journée annuelle de la Société Mathématique de France. Il retrace

l'histoire d'un problème soulevé par Gauss, relatif à la classification des

formes quadratiques ax2 -F bxy + cy2 à coefficients entiers.

Nous ne nous intéresserons qu'aux formes quadratiques dont le

discriminant x) A — b2 — 4ac est <0; une telle forme garde un signe constant,
et nous nous contenterons d'étudier celles qui sont positives. Pour abréger,

nous dirons simplement forme quadratique pour forme quadratique en deux

variables, à coefficients entiers, de discriminant <0 et à valeurs positives.

Lorsqu'on cherche à classifier ces formes quadratiques, il est raisonnable
de les regrouper par classes, deux formes étant dans la même classe si

elles se déduisent l'une de l'autre par « changement de variables » ; il convient
de préciser quels sont les changements de variables que l'on s'autorise:
nous prendrons ici ceux de la forme

(1) (x, y) h- (ax + ßy, yx + 8y)

de variables (x, y) h-> (x + y, y) et (x, y) i— (x, x + y).

Deux formes quadratiques appartenant à une même classe sont dites
équivalentes ; elles ont le même discriminant. Il est dès lors naturel de chercher
à décrire l'ensemble des classes de formes quadratiques de discriminant A,

pour un entier À < 0 donné. Pour que cet ensemble soit non vide, il faut
et il suffit que l'on ait

(2) A 0 ou A 1 (mod. 4).

r) Dans la théorie des formes quadratiques, on dit plutôt que 4ac - b2 est le
discriminant de ax2 + bxy 4- cy2. Nous adoptons ici la convention opposée pour
respecter l'usage en vigueur dans l'étude des équations du second degré et des corps
quadratiques.

par J. Oesterlé

Ig SL2(Z). Ils forment un groupe engendré par les changements
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L'exposé est divisé en deux parties :

Les résultats exposés dans la première partie sont dus pour l'essentiel
à Gauss 1). On y montre pour commencer qu'il n'y a qu'un nombre fini
de classes de formes quadratiques de discriminant A < 0 donné (§ 1). On
donne un algorithme simple permettant d'obtenir un système de représentants
de ces classes, et de calculer le nombre h(A) de telles classes (§ 2 et § 3).

Une des découvertes fondamentales de Gauss est l'existence d'une structure
de groupe abélien naturelle sur l'ensemble Cl (A) des classes de formes

quadratiques primitives de discriminant À {primitives signifie telles que
pgcd(a, b, c) — 1): cette structure de groupe est décrite au § 4 ; le lien avec

l'arithmétique des corps quadratiques imaginaires est exposé aux § 4 et § 5.

En dressant une table des nombres de classes, Gauss constate
expérimentalement que ces nombres semblent tendre vers + oo lorsque le
discriminant tend vers — oo (en satisfaisant à (2)). Il faudra attendre plus de cent ans,

avec les travaux de Heilbronn en 1934, pour voir cette assertion démontrée.
Se pose alors la question de dresser, pour les petites valeurs de h entier

^ 1, la liste complète des À < 0 tels que h{A) h. C'est essentiellement

l'histoire (sans démonstrations) des progrès récents obtenus sur cette question
qui fait l'objet de la seconde partie de l'exposé. Nous expliquerons le rôle

joué par les courbes elliptiques dans ces progrès.

I. La classification de Gauss des formes quadratiques

§ 1. Finitude du nombre de classes 2)

Théorème. Soit d un entier ^ 1. Il n'y a qu'un nombre fini de

classes deformes quadratiques de discriminant —d.

Ce théorème résulte des deux lemmes suivants :

Lemme 1. Toute classe contient une forme quadratique ax2 + bxy + cy2

telle que | b | ^ a ^ c.

1) C.-F. Gauss, Disquisitiones Arithmeticae, 1801 (Werke, t. I), Section cinquième.
(Traduction française par A.-C.-M. Poullet-Delisle, parue en 1807.) Dans cet
ouvrage, Gauss suppose les formes ax2 + bxy + cy2 paires, c'est-à-dire telles que b
soit pair. Le cas général s'y ramène facilement, en remplaçant ax2 + bxy + cy2

par 2ax2 + 2bxy + ley2 lorsque b est impair.
2) C.-F. Gauss, Disquisitiones Arithmeticae, n° 174.
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Lemme 2. Il riy a qu'un nombre fini de triplets de nombres entiers

(a, b, c) tels que b2 — 4ac — d et \ b \ ^ a ^ c.

Démontrons le lemme 1. Soit ax2 + bxy + cy2 une forme quadratique

appartenant à la classe C considérée. Par hypothèse cette forme est positive,

de sorte que a > 0 et c > 0. Les changements de variables (x, y) m» (x — ey, y)

et (x, y) i—> (x, y — ex), où e est le signe de b, ont pour effet de remplacer

(a, b, c) par (a, b-2ea, a + c —|b|) et par (a + c-\b\, b-2zc, c). Si donc \ b\> a

ou | b | > c, on peut remplacer ax2 + bxy -F cy2 par une forme équivalente

pour laquelle la quantité a + c est strictement plus petite. Après un nombre

fini de substitutions de ce type, on trouve une forme ax2 + bxy + cy2

dans C pour laquelle | b | a et ] b | ^ c. Cette forme, ou la forme

ex2 - bxy + ay2 qui s'en déduit par le changement de variables (x, y)

b-> (y, —x), remplit les conditions du lemme 1.

Démontrons le lemme 2. Si (a, b, c) sont comme dans l'énoncé de ce

lemme, on a

(3) d 4ac — b2 ^ 4a2 — a2 3a2

de sorte que a ne peut prendre qu'un nombre fini de valeurs; il en est

alors de même de b et de c, puisque | b j ^ a et c (b2 + d)/4a.

§ 2. Formes quadratiques réduites x)

Dans ce paragraphe, nous montrons comment la théorie de la réduction
de Gauss permet de sélectionner un représentant dans chaque classe C

de formes quadratiques de discriminant — d.

Nous savons déjà que C contient une forme quadratique ax2 + bxy + cy2

telle que | b | ^ a ^ c (lemme 1 du § 1). Peut-il y avoir plusieurs formes
de ce type dans C? En fait, la seule autre possible est ax2 — bxy + cy2,

lorsqu'elle est dans C. Ceci vient du fait que \ b\ est déterminé par a

et c (on a b2 — 4ac=—d), et que a, c sont caractérisés par le fait que
pour toute forme quadratique q e C, on a

(4) a mî(q(u)) (u^O dans Z2) ;

(5) ac inf (q(u)q(v)) (u, v non colinéaires dans Z2).

Il nous suffit en effet de vérifier (4) et (5) pour une seule forme
quadratique q e C, par exemple la forme ax2 -h bxy + cy2 elle-même. Mais

^ C.-F. Gauss, Disquisitiones Arithmeticae, n° 171 et 172.
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pour celle-ci, on a q( 1, 0) a, q(0, 1) c et q(x, y) ^ ax2 — | b || xy | + cy2

^ (2a —|h|) | xy | + (c —a)y2, d'où

q(x, 0) ^ a si x ^ 0

(6) q(0, y) ^ c si 3; # 0

g(x, y) ^ (2a —|h|) + (c — a) a + c — | h [ > c si xy 0,

et donc les égalités (4) et (5).

Voyons maintenant dans quels cas la forme ax2 — bxy + cy2 appartient
à la classe C :

Lemme. Pour que laforme q(x, y) ax2 + bxy + cy2 (avec \b\^a^c)
soit équivalente à la forme q'(x, y) ax2 — bxy + cy2, il faut et il suffit

que bon ait a \ b |, a c ou b — 0.

On a q(x, y) q'(x ± y, y) si a ± b, q(x, y) q'(y, — x) si a c,

fa ß
q(x9 y) q'(x, y) si b 0. Supposons 0 < | b | < a < c. S'il existe

VT 8

e SL2(Z) tel que q'(x, y) q(ax + ßy, yx + Ôy), on a q(a, y) a et g(ß, 8) c,

/oc ß\
d'où y 0 puis ß 0 en appliquant (6), et finalement s + /, ce

\y <v
qui est absurde.

L'étude qui précède nous conduit à adopter la définition suivante:

une forme quadratique ax2 + bxy + cy2 est dite réduite si l'on a

I b I ^ a < c

b ^ 0 si a est égal à | b | ou à c

Nous avons alors prouvé le théorème suivant :

Théorème. Chaque classe de formes quadratiques de discriminant —d

contient une unique forme réduite.

La démonstration du lemme 1 du § 1 fournit en fait un algorithme

permettant d'obtenir la forme quadratique réduite équivalente à une forme

donnée.

Exemple. Appliqué à la forme quadratique 9x2 + 43xy + 53y2 (représentée

par (9, 43, 53) pour abréger), cet algorithme s'écrit

(9, 43, 53) ~ (9, 25, 19) - (9, 7, 3) - (5, 1, 3) ~ (3, -1, 5)

et 3x2 — xy + 5y2 est la forme réduite cherchée.
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§ 3. Une méthode élémentaire pour calculer le nombre de classes *)

Soit d un entier ^ 1. D'après le § 2, le nombre h( — d) de classes de formes

quadratiques de discriminant — d est le nombre de formes quadratiques
réduites de discriminant — d, c'est-à-dire le nombre de triplets (a, fi, c)

d'entiers vérifiant

b2 — 4ac — d

(7) | b < a < c

b > 0 si a est égal à j b | ou à c

Nous savons déjà que h( — d) est non nul si et seulement si —d est

congru à 0 ou à 1 modulo 4. Les conditions (7) entraînent que a, donc
aussi | fi | est majoré par J~dß (§ 1, formule (3)) et que | fi | est de même
parité que d. On en déduit aussitôt la formule suivante, permettant de calculer
h{ — d) :

Proposition. Supposons —d congru à 0 ou à 1 modulo 4. On a:

h(~d) — Z n{a,b)
Cd/3 a\((b2 + d)/4)

b d(mod. 2) b < a ^ V(è2 + d)/4

avec n(a,b)1 si l'on a b0 ou a b ou a U(&2 + rf)/4, et
n(a, b) 2 sinon.

Exemple. Calculons £(-347). On a 10 < ^347/3 < 11, d'où le tableau
suivant :

b (b2 + d)/4 a n(a, b)

1 87 3.29 1,3 1,2
3 89 — _
5 93 3.31 — _
7 99 32.11 9 2
9 107 — _

dont on déduit £(-347) 5. Les coefficients des cinq formes réduites se
lisent sur le tableau ; ce sont :

(1, 1, 87), (3, 1, 29), (3, -1, 29), (9, 7, 11) et (9, -7, 11).

') C.-F. Gauss, Disquisitiones Arithmeticae, n° 174 et 175.
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L'étude des formes quadratiques se ramène facilement à celle des formes

primitives, c'est-à-dire celles dont les coefficients ont 1 pour plus grand
commun diviseur. En effet, si —d< 0 est congru à 0 ou à 1 modulo 4,

il existe un plus grand entier F tel que —à s'écrive —d0F2 avec —d0

congru à 0 ou 1 modulo 4. Pour toute classe C de formes quadratiques
de discriminant — d, il existe un diviseur / ^ 1 de F et une classe C' de

formes quadratiques primitives de discriminant —df~2 tels que C fC'.
Les nombres de classes h et les nombres de classes primitives h sont

donc reliés par l'égalité

(8) h(-d) YK-df-2).
f\F

Lorsque F est égal à 1, ce qui équivaut à dire que d n'est pas
divisible par le carré d'un nombre premier impair et est congru à 3 (mod. 4),

à 4 (mod. 16) ou à 8 (mod. 16), on dit que — d est un discriminant

fondamental Toute forme de discriminant — d est alors primitive et on a

h(-d) h(-d).

§ 4. Le groupe des classes x)

Cherchant à généraliser la formule classique

(x2 + y2) (x'2 + y'2)xx+Gaus,f se demande pour quels couples (q, q') de formes quadratiques, il
existe Une forme quadratique q" telle que l'on ait une identité

q{x,y)q'(x',y') q"{x", y"),

où x" et y" sont des combinaisons linéaires à coefficients entiers de xx',

x/, yx' et yy'.
Si l'on a une identité du type précédent, et si — d, —d', —d" désignent

les discriminants de q, q\ q", le carré du déterminant de l'application
linéaire (x, y) h- (x", y") (resp. (x', y') i— (x", y")) est égal à dqf(x\ y')2/d" (resp.

d'q{x, y)2/d").

Gauss montre que lorsque q et qf sont des formes primitives de même

discriminant — d, il est possible d'obtenir une identité du type ci-dessus,

avec q" forme primitive de discriminant — d, et

q'(x', y') det ((x, y) (x", y")), q(x, y) det ((x', y') (x", y")).

x) C.-F. Gauss, Disquisitiones Arithmeticae, n° 234 à 243.
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Il montre de plus que, sous ces conditions, la classe C" de q" ne dépend

que des classes C, C de q, q', et que la loi de composition qui à (C, C

associe C" définit sur l'ensemble Cl( — d) des classes de formes primitives de

discriminant —à une structure de groupe abélien.

De nos jours, on préfère introduire la loi de composition précédente en

interprétant Cl( — d) comme un ensemble de classes d'idéaux fractionnaires

inversibles. Pour cela, introduisons l'ensemble (9{ — d) des nombres complexes

de la forme (u + iVy/d)/2, où u et v sont des nombres entiers et

u vd (mod. 2). C'est un sous-anneau de C, dont le corps des fractions est

K Q + Qu/d.
Un réseau de K est un sous-groupe de K qui admet une base sur Z

formée de deux éléments. On dit qu'un réseau L de K est un (9{-d)-idéal
fractionnaire inversible si 0( — d) est l'ensemble des aeK tels que aL c= L.

Cela équivaut à dire que L est stable par multiplication par les éléments

de (9( — d), et est un C( —ù)-module projectif (nécessairement de rang 1).

On vérifie que cela équivaut aussi à l'existence d'un nombre rationnel

X > 0 tel que LL X(9( — d\ avec L le réseau conjugué de L. Ce nombre X

est alors noté N(L) et appelé norme de L.

Les (9( — ù)-idéaux fractionnaires inversibles forment un groupe abélien

pour la loi de composition (L, L7) i— LL (si LL X(9( — d) et LL' X'(9{ — d\
on a LL'(LL') XX'(9( — d)); son élément neutre est (9( — d) et l'opposé de L
est N(L)~1L. Les (9(-d)-idéaux fractionnaires inversibles de la forme
XC( — d) avec X e Kx sont dits principaux et forment un sous-groupe du

groupe précédent. Le groupe quotient est le groupe des classes de (9(-d)-
idéaux fractionnaires inversibles. Il s'identifie canoniquement au groupe
Pic (®( — d)) des classes de (9{ — démodules projectifs de rang 1.

Etant donné un O(-d)-idéal fractionnaire inversible L, et une base

(©!, co2) d'orientation positive de L sur Z, la forme quadratique q(x, y)
N(L)-1 | x(Dl + yco2 |2 est à coefficients entiers, primitive et de

discriminant — à : cela résulte facilement de l'égalité LL N{L)0( — d). Inversement,
étant donnée une forme quadratique ax2 + bxy + cy2 primitive et de

discriminant — d, le réseau L de K engendré par a et (b + i^/d)/2 est un
(9{ — d)-idéal fractionnaire inversible, car on a LL a(9{ — d). On vérifie que
les constructions précédentes définissent par passage au quotient des iso-
morphismes réciproques Fun de Fautre entre le groupe des classes de (9(-d)-
idéaux fractionnaires inversibles et Cl(-d), muni de la structure de groupe
définie par Gauss.
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L'élément neutre de Cl( — d) est la classe de la forme x2 -F (d/4)y2 si

à — 0 (mod. 4), celle de la forme x2 + xy + ((d +1)/4)y2 si d 3 (mod. 4).

L'opposé de la classe de ax2 -F bxy + cy2 est celle de ax2 — bxy 4- cy2.

Le lemme du § 2 permet donc de dresser la liste des éléments d'ordre < 2

de Cl( — d) (appelés classes ambiguës ou ambiges); le nombre de ces éléments

est x)

2t~1 si d ^ 12 mod. 16 et d ^ 0 mod. 32

(9) ?'2 si d= 12 mod. 16

2} si d 0 mod. 32

où £ est le nombre de diviseurs premiers de d.

Pour calculer le produit des classes de deux formes quadratiques
ax2 + bxy + cy2 et a'x2 + b'xy + c'y2 primitives de discriminant —d, on

pose 2)

6 pgcd (a, a', (b -F b')/2),

on choisit des entiers u, v et w tels que

ua + va' + w(b + b')/2 6

et on pose

a" aa'/b2 b" [uab'+ va'b + w(bb'— d)/2]/ô c" (b" 2 + <i)/4«,/.

La forme quadratique a"x2 + b"xy + c"y2 est alors à coefficients entiers,

primitive et de discriminant — d, et sa classe est le produit cherché.

En effet, aux classes des deux formes quadratiques données correspondent

les classes des (9( — d)~idéaux fractionnaires: L Za + Z(b + i^fd)/2 et

L' Za' + Z(b' + iy/d)/2. L'idéal fractionnaire LL' est engendré par les

quatre éléments

aa', (ab' + ai^fd)/2 (a'b + di«J~di)/2 (bb' — d + i(b + b')^/d)/4

et l'on a N(LL') — aa'. On vérifie facilement que oq (aa')/h et

co2 t-i é>(b" + i-s/d)/2 forment une base de LL' sur Z d'orientation positive
et que l'on a (aa')~1 | xco1 + y®2 I

2 a"xl + b"xy + c"y2, d'où le résultat.

Exemple. Le groupe Cl( — 347) est cyclique d'ordre 5 (cf. §3, exemple).

Il est engendré par la classe C de la forme réduite 3x2 + xy + 29y2, et

x) C.-F. Gauss, Disquisitiones Arithmeticae, n° 257 à 259.

2) C.-F. Gauss, Disquisitiones Arithmeticae, n° 242; cf. aussi le n° 243 pour des
méthodes plus rapides de calcul du produit.
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2C, 3C, 4C, 5C sont les classes des formes réduites dont les coefficients

sont (9, 7, 11), (9, -7, 11), (3, -1, 29) et (1, 1, 87) respectivement

§5. Lien entre h( — d) et h( — df2) x)

Soient — d un discriminant fondamental (cf. §3), et / un entier ^ 1.

Les nombres de classes primitives h( — df2) et h( — d) sont liés par une formule

simple. Pour l'établir, nous allons définir un homomorphisme de groupes

C'est dans le langage des idéaux fractionnaires que cet homomorphisme
se définit le plus aisément: à la classe d'un (9( — d/2)-idéal fractionnaire L,
v fait correspondre la classe de 0( — d)L, qui est un &{ — ù)-idéal fractionnaire.

Pour tout x e (9{ — d), inversible modulo f (9{ — d), le réseau x(9( — d)

n 0( — df2) est un (9{ — ù/2)-idéal fractionnaire. L'application qui à x associe

la classe de cet idéal définit par passage au quotient un homomorphisme
de groupes

On démontre (en utilisant le fait que « la donnée d'un réseau équivaut
à celle de ses localisés ») que la suite

est exacte, et que le noyau de u est engendré par les classes des entiers
relatifs inversibles modulo / et des unités de (9{ — d\

Un argument de comptage permet d'en déduire la formule

v: Cl(-df2) Cl(-d).

u:(&( ,/))•

((9(-d)/f&(-d)y A Cl(-df2) ± 0

h(~df2) h( —d)wVJ] (1-p Xx(p))
P\f

p premier

où l'on a posé

w

3 si d 3 et / ^ 2

2 si d 4 et / ^ 2

1 sinon,

et où x désigne le caractère de Dirichlet quadratique associé

l) C.-F. Gauss, Disquisitiones Arithmeticae, n° 253 à 256.
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au corps Q(x/ — d). On a en particulier si d > 4

(10)

où cp est la fonction d'Euler.

h(-df2) > h(-d)(p{f)

II. Le problème du nombre de classes

Dans cette partie, nous allons étudier le comportement du nombre de

classes lorsque le discriminant tend vers — oo. Compte tenu des formules (8)

de I. § 3 et (10) de I. § 5, il est légitime de restreindre notre étude aux
discriminants fondamentaux (cf. I. § 3). Dans toute la suite, — d sera un tel

Dans les derniers numéros de son exposé de la classification des formes

quadratiques, Gauss émet quelques observations concernant les tables de

nombres de classes (il avait constitué lui-même de telles tables, en particulier
pour d ^ 3000); il qualifie de surprenante l'observation suivante1): pour
chaque entier h > 1, il semble n'y avoir qu'un nombre fini de d tels que
h( — d) h. Ainsi, pour h 1, ne trouve-t-il dans sa table que les neuf
discriminants fondamentaux

(et en outre les quatre discriminants non fondamentaux —12, —16, —27, —28).

Comme nous l'avons dit dans l'introduction, Heilbronn 2) en 1934 a

démontré que, conformément à l'observation de Gauss, on a bien

Des tables étendues de nombres de classes ont été construites par
ordinateur. Buell3) par exemple a publié les valeurs de h( — d) pour
d ^ 4000000. Parmi les discriminants fondamentaux satisfaisant à cette

inégalité, le nombre de ceux pour lesquels h( — d) est égal à 1, 2, 3, 4, 5, 6,

7, 8, 9, 10 est respectivement 9, 18, 16, 54, 25, 51, 31, 131, 34, 87, et

x) C.-F. Gauss, Disquisitiones Arithmeticae, n° 303.

2) H. Heilbronn, On the class numbers in imaginary quadratic fields, Quarterly
J. of Math. (Oxford), 5 (1934), 150-160.

3) D. A. Buell, Small class numbers and extreme values of L-functions of quadratic
fields, Math, of Comp. 31 (1977), 786-796.

discriminant : on aura done h( — d) h( — d).

-3, -4, -7, -8, -11, -19, -43, -67, -163

ai) lim h( — d) +oo
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le plus grand d correspondant est respectivement 163, 427, 907, 1555,

2683, 3763, 5923, 6307, 10627, 13843.

Cela semble suggérer que tous les discriminants fondamentaux — d pour
lesquels h( — d) ^ 10 figurent dans la table de Buell. Peut-on le prouver?
C'est à ce type de question qu'est consacrée la fin de l'exposé. On s'intéresse

à ce problème car les discriminants pour lesquels h( — d) est petit possèdent

comme nous le verrons des propriétés arithmétiques remarquables. Nous
allons commencer par décrire les deux outils essentiels pour l'étude de

h( — d\ à savoir les nombres de représentations des entiers par les formes

quadratiques et les fonctions zêta associées.

Les formes quadratiques de discriminant —3 et —4 ont des automor-
phismes distincts de ±1 dans SL2(Z). Pour éviter les complications
techniques qui en résultent, nous supposerons dans la suite d ^ 3 et d / 4

(donc d^l).

§ 1. Représentation des entiers par les formes quadratiques

Soit q une forme quadratique de discriminant —d (distinct de —3 et
— 4). Le nombre de représentaticns primitives d'un entier n ^ 1 par q,

comptées au signe près, est

(12) rn(q) - Card {(u, v) e Z2 | q(u, v) n et pgcd (u, v) 1}

Ce nombre ne dépend que de la classe C de la forme quadratique
q, et on le note aussi rn(C). Soit ax2 + bxy + cy2 la forme réduite appartenant

à C. On a 3a2 ^ 4ac — b2 < 4c2 (l'inégalité est stricte car d ^ 4),

d où a ^ y/d/3 et c > ^Jd/2. On a ra(C) 0, et si n ^ 1 est un entier < c
tel que rn(C) ^ 0, on a nécessairement n a et rn(C) 1 (I. § 2, formule (6)).
On en déduit

Introduisons le nombre total des représentations primitives, comptées au
signe près, de l'entier n par les différentes classes de formes quadratiques
de discriminant — d :

(13) £ rJC) < 1 < X rJC).
n^Vd/2 n^Vd/3

(14) r„(~d) L ''„(C)
CeCl(-d)



54 J. OESTERLÉ

On déduit de (13) un encadrement du nombre de classes

(15) I r„(-d)s: h{-d)^£
n^Jd/2 n^Vd/3

ce qui montre que l'étude de h( — d) est liée à celle des nombres rn( — d).

Il n'existe à ma connaissance aucune formule simple permettant pour une
classe C donnée de calculer rn(C). Par contre, Gauss a obtenu le résultat

remarquable suivant x) :

Théorème. Pour tout entier n ^ 1, rn( — d) est le nombre de b (mod. 2n)

tels que b2 —d (mod. 4n).

La démonstration de Gauss est très élégante: Soit (qt) un système de

représentants des classes de formes quadratiques de discriminant — d. Si b

est un entier tel que b2 s'écrive —d + 4ne, la forme quadratique nx2

+ bxy + cy2 a pour discriminant — d et s'écrit qt (ux + wy, vx + ty) pour un

et (u, v) est déterminé au signe près par b (mod. 2n) car / et — I sont
les seuls automorphismes de qt dans SL2(Z). Inversement, chaque représentation

primitive de n par l'une des formes qt s'obtient par ce procédé à

partir d'un unique b (mod. 2ri) tel que b2 —d (mod. 4n).

En décomposant Z/4nZ en ses composantes primaires, on obtient la forme

équivalente suivante de l'énoncé précédent :

Corollaire. Pour que rn( — d) ^ 0, il faut et il suffit que n soit de la

forme d'pf1 pma, avec d' un diviseur de d sans facteurs carrés,

Pi,..., pm des nombres premiers deux à deux distincts modulo lesquels —d

est un carré non nul, et am des entiers ^1. On a alors

De la formule (15) et du corollaire ci-dessus, on peut retenir le principe
suivant :

Principe. Si d est grand et h( — d) est petit, il y a peu de petits
entiers n qui soient représentés par une forme quadratique de discriminant

— d, et peu de petits nombres premiers modulo lesquels —d est un carré.

Illustrons ceci dans le cas particulier où d 163. On a h(—163) 1

et x2 H- xy -T 41y2 est la seule forme quadratique réduite de discriminant

J) C.-F. Gauss, Disquisitiones Arithmeticae, n° 167, 168 et 180.

rn{--d) 2-
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- —163. D'après le début de ce paragraphe, on a rn(—163) 0 pour
2 ^ n < 40. Par suite, —163 n'est un carré modulo aucun des nombres

premiers ^ 39, et le corollaire au théorème ci-dessus implique que si

rn{—163) / 0 et n < 412, nécessairement n est premier. Ceci explique
pourquoi la suite (découverte par Euler): 41, 43, 47, 53, 61, formée

par les valeurs de x2 + x + 41 pour x ^ 0 ne comporte que des nombres

-premiers jusqu'à 1601 392 + 39 + 41).

§ 2. Fonctions zêta

Il est fructueux de réinterpréter les résultats du paragraphe précédent
en introduisant des séries de Dirichlet génératrices : pour toute forme
quadratique q de discriminant — d, la série de Dirichlet

(16) Ç(4, s) =7 £
^ (u,v)e Z2-{(0,0)}

converge absolument pour Re (s) > 1 et l'on a

oo

(17) t,(q, s)Ç(2s) £
n= 1

oo

où Cfsj £ n~sestla fonction zêta de Riemann. Comme Çfcy, s) ne dépend
n 1

que de la classe C de q, on l'écrit aussi Ç(C, s).

La fonction Ç(q, s) jouit de remarquables propriétés analytiques : la fonction

(!8) A{q, s) 2ds/2(2n)-T{s)^q, s)

admet un prolongement méromorphe à C, avec pour seuls pôles des pôles
simples en 0 et 1 de résidus — 1 et 1, et vérifie l'équation fonctionnelle
A(q, 1 — 5) A (q, s). En effet, la fonction thêta

(19) t) Y exP — m)2nt/^/d)
(n, m) e Z2

satisfait d'après la formule sommatoire de Poisson à l'équation fonctionnelle

(20) 9(g, t"1) td(q, t) ;

on a, par échange de la somme et de l'intégrale,

{* 00

(21) Ml,s) [0(4, t) -1] xdt,
J 0
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et l'on en déduit l'expression suivante de A(q, s), sur laquelle le prolongement
méromorphe, les pôles et leurs résidus, et l'équation fonctionnelle sont évidents

(22) A (q,s)—L- +
s(s-l)

[0(<2, t)-i] (ts-1 + rs)rft.
1

Soit K le corps quadratique imaginaire Q + Qiyfd. On peut déduire du
dictionnaire entre formes quadratiques de discriminant — à et (9(-d)-idéaux
fractionnaires (I., § 4) que l'on a

oo

(23) ÇK(s) X gc, s)Ç(2 X
CeCl(-d) n= 1

où est la fonction zêta du corps K (définie par t^K(s) °ù a

parcourt l'ensemble des idéaux non nuls de l'anneau — Cette fonction

jouit de propriétés analytiques analogues à celles des fonctions Ç(C, s) :

en particulier, d'après ce qui précède, elle a un pôle simple en 1 de résidu

(24) ResS=1^s) 7id~ll2h( — d).

Cette formule joue un rôle fondamental pour l'étude de h( — d) par voie

analytique.

f-d\Notons y le caractère de Dirichlet n h-» Le théorème de Gauss
V « /

du § 2, ou plutôt son corollaire, traduit alors l'égalité entre séries de Dirichlet

1 +p~s
(25) t 'i-nn-- n. u_rtn= 1 p premier IXfjF

ou encore, compte tenu de (24), l'égalité

(26) ÇK(s) «s)L(x, s)

00

où L(x, s) est la série de Dirichlet x(n)w_s- Cette égalité équivaut à la
n 1

décomposition de en produit eulérien, décomposition que l'on prouve de

nos jours directement en utilisant la factorisation des idéaux dans l'anneau
de Dedekind (9( — d).

En utilisant (25) et (26), nous allons reformuler le principe énoncé à la fin
du paragraphe précédent.

Principe. Supposons d grand et h( — d) petit. Alors, on a %(p) — 1

pour la plupart des petits nombres premiers p. Si X: N — {0} -> {— 1, 1}

est la fonction qui à un produit de r nombres premiers (non nécessairement
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distincts) associe (— l)r, on a X(n) %(n) pour la plupart des petits

nombres entiers n. La fonction ÇK(S) doit ressembler à la fonction Ç(2s).

Ces énoncés sont volontairement vagues. Les rendre précis est souvent le

nœud des démonstrations de minorations de h( — d) lorsque d tend vers co.

§3. Ce que l'on espère sur le comportement de h( — d)

On peut montrer que en moyenne (en un sens qui demande à être

précisé, ce que je ne ferai pas ici), h( — d) est équivalent à une constante

non nulle fois J~d\ déjà Gauss connaissait ce type de résultat 1).

Il n'est pas vrai par contre que h( — d)/y]d admette un minorant > 0

ou un majorant lorsque d tend vers + oo : on sait par exemple que

h{ — d)/(y/d log log d) ne tend pas vers 0 et que h( — d) log log d/yjd ne tend

pas vers + co lorsque d tend vers + oo.

On obtient cependant de façon élémentaire des majorations raisonnables

de h( — d) (raisonnable signifiant avec l'exposant ~ que l'on attend pour d),

de la forme h( — d) ^ C-J~d log d. Par exemple :

Proposition. On a pour d > 4

Compte tenu de (24) et (26), il revient au même de montrer que l'on a,

en posant %(n)

Or, pour tout nombre réel x > 0, la somme M(x) £ < yfn) est majorée
par N(x) inf ([x], [(d-l)/2]), et l'on a donc, en intégrant par parties

(27) h(—d)^n 1^/dlogd.

OO

E %(n)/n < log

n ^
X2 ^

1
X2

E 1 In<log
«'Il,/ I)2|

:) C.-F. Gauss, Disquisitiones Arithmeticae, n° 302.
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Il est possible d'obtenir des minorations raisonnables de h( — d) si l'on
admet l'hypothèse de Riemann généralisée. Ainsi par exemple, en suivant une
démonstration de Hecke, publiée par Landau 1), on obtient :

Proposition. Si la fonction zêta C)K du corps K Q + Qi-s/d
n'admet aucun zéro réel > 1 — (2/log d), on a

(28) h{-d) ^—Jd/logd.
ne

Soit ae]l/2, 1[ tel que ÇK ne s'annule pas dans l'intervalle ]a, 1[. On a

alors ^(a) ^ 0, c'est-à-dire A(C, a) ^ 0 (formule (23)). Or il résulte
de la formule (22) que A(C, a) + (a(l —a))-1 est positif pour toute classe

CeCl(-d)

C g Cl( — d), et même supérieur à 2

classe neutre. On a par conséquent

h( — d) ^ 2oc(l — oc)

e 2nt^d(f- 1-yt a)dt lorsque C est la

e-Intima-l + r^dt

Le second membre de (28) est majoré par 1 pour d < 800, par 2 pour
d ^ 5000, par 3 pour d ^ 15000. Il nous suffit donc de démontrer la

proposition pour d ^ 15000. Prenons alors oc égal à 1 — (2/log d) ; remarquons
que

e 2nt^dt adt ^ e 2nt^dt 1dt ^ e
12n/y/d log 6 ^ 1, 3 >

1/a 1dt > e-2nt/Jdta- ldÎ9

d'où

h( — d) ^ 2a(l —a) e 2nt^df- 1dt 2oc(l — oc) (-^/d/lnfTia).

L'application x i— x(2tu) T(x) étant décroissante sur
1

2'
1 on en déduit

*) E. Landau, Über die Klassenzahl imaginär-quadratischer Zahlkörper, Göttingen
Nachrichten (1918), 285-295.
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1 2
h( - d)>-(1 - a )d"12— (y/d/log d).

k ne

Si nous sommes entrés dans les détails de cette démonstration, c est

pour bien illustrer les deux points suivants :

1) Nous voyons à l'œuvre le principe général énoncé à la fin du § 2,

qui dit que si d est grand et h(-d) est petit, ^K{s) doit ressembler à

Ç(2s): en effet ÇK{s) admet un pôle en 1, alors que Ç(2s) est holomorphe

pour Re(s) > mais si d est grand et h( — d) petit, l'existence du pôle

pour doit être contrebalancée par l'existence d'un zéro de proche de 1,

d'après la proposition ci-dessus.

2) Si l'hypothèse de Riemann généralisée était démontrée, les questions

posées dans l'introduction de cette deuxième partie seraient résolues: ainsi

par exemple il résulterait de la proposition que tous les discriminants
fondamentaux — d pour lesquels h( — d) ^ 30 figurent dans la table de Buell.

§4. Minorations non effectives de h(—d)

Comme nous l'avons vu au paragraphe précédent, h( — d) est grand

(~d\
lorsque d est grand et que la fonction L(%d, s), où %d(ri) n'a pas

\n J
de zéro voisin de 1. Supposons alors que h( — d) et h( — d') soient petits

pour deux grandes valeurs de d et d' (en un sens que l'on peut préciser,
ce que je ne ferai pas ici). Les fonctions L(%d,s) et L(xd,s) ont alors
chacune un zéro voisin de 1, et l'on en déduit que la fonction zêta du

corps biquadratique Q [iy/d, i-sfd'~\ a deux zéros voisins de 1. Des estimées

élémentaires permettent d'en déduire une contradiction. Cette méthode montre
que h( — d) ne peut être petit que pour au plus un grand d. Elle est une
variante de celle utilisée par Heilbronn pour montrer que

(29) lim h( — d) — oo
d-> oo

et a été utilisée par Siegel x) pour préciser à quelle allure h( — d) tend
vers + oo : Siegel montre que pour tout s > 0, il existe un entier d(s)

tel que: h( — d) ^ s/d1~£ pour d ^ ù(e).

b C. L. Siegel, Über die Classenzahl quadratischer Zahlkörver, Acta Arithmetica 1

(1936), 83-86.
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Il n'est malheureusement pas possible de calculer d(s) car cet entier dépend
de l'hypothétique grand discriminant exceptionnel pour lequel h( — d) serait

petit.
On peut cependant obtenir par les méthodes précédentes un énoncé

« effectif à au plus une exception près ». Cela a été fait par Tatuzawa *)

en explicitant les constantes dans la démonstration de Siegel: si 0 < s < -,

on a

(30)
7C

pour d > sup (e1/e, e11'2) à au plus une exception près. On en déduit par
exemple, en prenant e 1/15, que tous les discriminants fondamentaux — d

pour lesquels h( — d) ^ 10, à au plus une exception près, figurent dans *a table
de Buell et par suite sont de valeur absolue ^ 13843.

§ 5. Les cas h 1 et h 2 2)

D'après le paragraphe précédent, il existe au plus un discriminant
fondamental — d tel que h( — d) 1 et qui ne figure pas parmi les neuf

déjà connus de Gauss. La question de savoir si un tel d existe est restée

longtemps ouverte et est devenue célèbre sous le nom de problème du

dixième discriminant (ou du dixième corps quadratique imaginaire).
En 1952, Heegner publie une preuve de la non-existence du dixième

discriminant reposant sur la théorie des formes modulaires, mais cette preuve
fut jugée incomplète à l'époque.

En 1966, Stark et Baker prouvent indépendamment la non-existence du
dixième discriminant. Dans sa preuve, Stark ramène ce problème à la
détermination des solutions entières des équations 8x6 ±1 y2 et x6 ± 1 2y2.

Ces équations apparaissent déjà dans le travail de Heegner. En fait, deux ans

plus tard, Stark et Birch reprennent en détail les arguments de Heegner et

montrent la validité de sa démonstration.
La méthode de Baker utilise les minorations effectives de formes linéaires

en logarithmes de nombres algébriques. Elle a l'avantage de s'étendre au

problème du nombre de classes 2, et a permis à Baker et Stark de majorer

L) T. Tatuzawa, On a theorem of Siegel, Jap. J. of Math., 21 (1951), 163-178.

2) Pour un exposé plus détaillé des questions abordées dans ce paragraphe, avec
références bibliographiques, on pourra consulter par exemple l'exposé de M. Wald-
schmidt au Séminaire de Théorie des nombres de Paris en 1973 (exposé 12).
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de façon effective les d pour lesquels h( — d) 2; les bornes obtenues sont

très grandes (Stark obtient par exemple | d \ < ÎO1100), mais Stark d'une part,

Montgomery et Weinberger de l'autre, ont mis au point des méthodes qui

permettent par un calcul sur ordinateur utilisant les zéros de la fonction

zêta de Riemann (pour Stark) ou de séries L(%, s) (pour Montgomery et

Weinberger) de vérifier que, en dessous des bornes précédentes, tous les d

pour lesquels h( — d) 2 sont ^ 427.

Pour l'instant, aucune des méthodes précédentes n'a pu être appliquée

au problème du nombre de classes h pour h ^ 3.

§ 6. Courbes elliptiques et fonctions L

Nous allons maintenant parler un peu des courbes elliptiques, car elles

jouent un rôle fondamental dans la suite de l'histoire du problème de Gauss.

Considérons une équation de la forme

(W) y2 + axxy + a3y x3 + a2x2 + a4x + a6

où les ai sont dans Q. La cubique projective E définie par l'équation
homogène associée a un unique point à l'infini 0. Lorsque E est non
singulière, on dit que E (ou plutôt que le couple (E, 0)) est une courbe

elliptique définie sur Q, et que (W) en est une équation de Weierstrass. Un
changement de variables

(C) x u2x' + r

y m3/ + sx' + t (m, r, s, t dans Q, u^O)

conduit à une autre équation de Weierstrass (W') de E. On dit que
l'équation (W) est minimale si les coefficients at sont entiers et si les équations
{W') déduites de (W) par un changement de variables (C) avec u, r, s, t
entiers et u / ± 1, ne sont pas à coefficients entiers.

Une courbe elliptique E définie sur Q admet une équation minimale et
toute autre équation minimale s'en déduit par un changement de variables
(C) avec u + 1 et r, s, t dans Z.

Supposons désormais (W) minimale. Si l'on pose

X x + (a^/12) + (a2/3)

Y y + (aJ2)x + (a3/2),

l'équation (W)s'écrit Y2 X3 -{cj48)*- (c6/864). Un calcul élémentaire
montre que c4,c6 et A (c43 —c62)/1728 s'expriment comme polynômes
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universels à coefficients entiers en al5 a2, a3, a4, a6, donc sont entiers. Ces

entiers ne dépendent pas du choix de (W), mais seulement de la courbe

elliptique. On dit que À est le discriminant minimal de E.

Soit E(Q) l'ensemble des points rationnels de E (i.e. les solutions
(x, y) e Q2 de l'équation (W), auxquelles on ajoute le point à l'infini 0).

Il existe une unique structure de groupe abélien sur E(Q), d'élément neutre 0,

pour laquelle trois points de E(Q) ont une somme nulle si et seulement si

ce sont les points d'intersection (avec multiplicités) de E et d'une droite
du plan projectif.

Pour obtenir des informations sur les solutions rationnelles de l'équation
{W), on est amené à étudier le groupe E(Q). Je pense qu'il n'est pas exagéré
de prétendre que la majeure partie des travaux effectués et des notions
introduites dans la théorie des courbes elliptiques ont pour but ultime de

décrire E(Q). Un théorème important dans cette direction est le théorème de

Mordell-Weil: le groupe E(Q) est de type fini, et est par suite isomorphe à

F x Zr où F est un groupe fini et r un entier ^ 0 (que nous appellerons
le rang de E(Q)). On a des informations précises sur F à la suite de

travaux de Mazur (par exemple, on sait que F est d'ordre ^16); par contre,

r reste pour l'instant mystérieux (on ne sait même pas s'il peut prendre des

valeurs arbitrairement grandes, bien que l'on pense que tel est le cas).

Comme les coefficients de l'équation (W) sont entiers, on peut réduire cette

équation modulo un nombre premier p, puis compter le nombre de ses

solutions (x, y) dans (Z/pZ)2. Ce nombre ne dépend pas du choix de (W),
mais seulement de E. D'après un théorème de Hasse, il est de la forme

p — ap où ap satisfait à l'inégalité

(31) | ap|< 2.
La fonction LE de Hasse-Weil associée à la courbe elliptique est par

définition la série de Dirichlet

(32) l£(s) n (i -Vs)-1 n a-«pP^+p1"25)-1.
p|A p*A

Ce produit converge pour Re (s) > 3/2 d'après (31). Un cas particulier de

conjectures générales sur les fonctions L associées à des variétés algébriques

est:

Conjecture 1. La fonction AE(s) (27u)~T(s)L£(s) admet un prolongement

holomorphe à C, borné dans toute bande verticale, et il existe

sEe{ — 1, 1} et un entier NE^1 tels que AE(2 — s) zENE~1AE(s).
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00 r

Posons Le(s) £ ann~s et définissons sur le demi-plan de Pomcare
n= 1

(x e C | Im(i) > 0} une fonction fE par

oo

(33) /£(x) I a»e2,ti"T-
n 1

La théorie de Hecke, qui s'appuie sur la transformation de Mellin
* 00

A£(s) fE(iy) f~ldy,permet de montrer l'équivalence entre la conjec-
J 0

ture 1 et la suivante :

Conjecture Y. Il existe eE e {— 1, 1} et un entier NE ^ 1 (les mêmes

qu'avant) tels que fE(—l/NET) — sENET2fE(x).

On dispose de conjectures étendant la conjecture 1 aux séries L^x,s)

— £ an%(n)n~s> avec X caractère de Dirichlet. Généralisant le travail de
n 1

Hecke, Weil x) a montré que ces conjectures pour tous les % (ou même

seulement pour une famille assez grande de %) équivalent à la suivante sur fE :

Conjecture 2 (Taniyama-Weil)2). La fonction fE satisfait à la

conjecture Y et est une forme modulaire parabolique de poids 2 pour

r0(N£).

[La dernière assertion signifie que fE((ai + b)/{cT + d)) (ct + d)2f (x) si

61 ^
appartient au sous-groupe r0(iV£) de SL2(Z) formé par les matrices

c dj
telles que NE divise c, et que la fonction x i-> /(x)Imx est bornée sur le

demi-plan de Poincaré.]
Une courbe elliptique E définie sur Q qui satisfait à la conjecture 2

est appelée courbe elliptique modulaire ou courbe de Weil. On sait que si la
courbe E est à multiplications complexes, elle est de Weil. D'autre part,
étant donnée une courbe elliptique L, il existe des algorithmes permettant
de déterminer si elle est ou non une courbe de Weil. Cela a été appliqué
à de nombreux exemples et toutes les courbes elliptiques étudiées se sont
avérées être des courbes de Weil, conformément aux conjectures.

A. Weil, Über die Bestimmung Dirichletscher Reihen durch Funktionalgleichungen,
Math. Ann. 168 (1967), 149-156.

2) Lorsque cette conjecture est satisfaite, fE est une newform au sens d'Atkin-
Lehner, d'après un théorème de W. Li ; l'entier NE est le conducteur géométrique de
la courbe elliptique E, d'après un théorème de Carayol; en particulier, les facteurs
premiers de NE sont les mêmes que ceux du discriminant minimal de E.
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Birch et Swinnerton-Dyer ont émis une autre conjecture, stupéfiante car
elle relie la fonction LE, définie à partir des nombres de solutions de

l'équation (W) sur les corps finis, au rang r de E(Q) qui fournit une
information sur les solutions rationnelles de l'équation (W). Cette conjecture

suppose implicitement la conjecture 1 satisfaite :

Conjecture 3 (Birch et Swinnerton-Dyer). Le rang r de E(Q) est

égal à l'ordre du zéro de la fonction LE au point 1.

(Birch et Swinnerton-Dyer donnent en outre une expression conjecturale
de lim (s— l)r LE(s).)

s-> 1

§ 7. Le théorème de Goldfeld

Un pas décisif vers la solution effective du problème du nombre de classes

a été franchi par Goldfeld en 1976. L'idée à la base de son travail est

la suivante : Supposons que nous connaissions une série de Dirichlet
00

_ — à\
£ ann

s telle que pour tout caractère de Dirichlet % : n i—> avec — d
n 1 \ ^ /oo

discriminant fondamental, la série an%(n)n~s ait un comportement ana-
n i

00

lytique très différent de la série £ anX(ri)n~s où X est la fonction multi-
n= 1

plicative introduite à la fin de II, § 2. On peut alors espérer d'après le

principe de II, § 2, montrer de façon effective que lorsque d est grand,
h( — d) ne peut être petit.

De fait, Goldfeld montre x) qu'il suffit de connaître une seule courbe

elliptique E définie sur Q telle que

— E soit une courbe de Weil ;

— la fonction LE ait un zéro au moins triple au point 1,

et d'appliquer l'idée précédente à la série de Dirichlet LE pour obtenir
des minorations effectives de nombres de classes. Celles-ci sont bien moins
bonnes que celles que donne l'hypothèse de Riemann généralisée (cf. § 3) :

x) D. M. Goldfeld, The conjecture of Birch and Swinnerton-Dyer and the class
number of quadratic fields, Journées Arithmétiques de Caen, Astérisque 41-42 (1977),
219-227.
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on obtient par exemple *) pour h( — d) impair une inégalité de la forme

(34) h(-d)^cE\ogd

où cE est une constante dépendant de la courbe elliptique E choisie, et

susceptible d'être calculée. (Plus généralement, si h( — d) est de la forme 2th!

avec h' impair, on a une inégalité analogue à (34) à condition de remplacer

cE par une nouvelle constante cE(t) qui dépend de t, par exemple cE(t)

cEe~^\ et de supposer d premier à NE; cette dernière condition peut
même être omise si l'on choisit E convenablement comme l'ont remarqué Gross

et Zagier.)

Comment trouver E remplissant les deux conditions énoncées ci-dessus?

On commence par choisir une courbe elliptique E telle que le groupe E(Q)
ait un rang impair r ^ 3 (il y en a une infinité et on peut en expliciter
à volonté). On vérifie qu'elle est de Weil (soit parce qu'elle est à

multiplications complexes, soit par un calcul sur ordinateur) et que le signe sE de

l'équation fonctionnelle de LE est — 1 (par le calcul). La fonction LE a alors

un zéro d'ordre p impair en 1, et si l'on croit en la conjecture de Birch et

Swinnerton-Dyer, p doit être égal à r, donc ^ 3. Malheureusement, cette

conjecture n'est pas démontrée. Peut-on s'en passer et dans le cas particulier
choisi, prouver directement l'inégalité p ^ 3? Puisque p est impair, cela
revient à montrer que L'E( 1) 0. Il est possible d'obtenir par calcul sur
ordinateur des valeurs approchées de L'E( 1), mais a priori même si celles-ci sont
très petites on ne peut conclure à la nullité de LE( 1).

Il a fallu attendre 1983 et les travaux de Gross et Zagier pour arriver
enfin à surmonter cette difficulté et à appliquer le théorème de Goldfeld.

§8. Le théorème de Gross et Zagier

Soit E une courbe elliptique définie sur Q et soit P g E(Q) un point
rationnel de E. Ecrivons l'abscisse x(n(P)) du point P + + P (n termes,
la somme étant calculée dans le groupe E(Q)) sous forme d'une fraction

irréductible ajbn. On montre que l'expression ~ n~2 log (sup (\an|, \bn\j) a une

limite îi(P) lorsque P tend vers +co, appelée hauteur de Néron-Tate de P.

l) Cette inégalité, un peu meilleure que celle de Goldfeld, est prouvée par la même
méthode dans mon exposé sur la question au Séminaire Bourbaki (Juin 1984
exposé 631). '
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L'application P i— h(P) de £(Q) dans R est quadratique et positive, et l'on a

h{P) 0 si et seulement si P est un point de torsion du groupe E(Q).
Gross et Zagier ont obtenu en 1983 un très beau théorème *) qui donne

une expression de la dérivée en 1 de certaines fonctions L associées à des

formes modulaires. Exposons simplement îe cas particulier de ce théorème

qui nous intéresse pour le problème du nombre de classes: considérons

comme au § 7 une courbe elliptique E de Weil, telle que le signe eE

de l'équation fonctionnelle LE soit —1, et notons fE la forme modulaire
associée (§ 6) ; il existe alors une constante réelle calculable non nulle cE

telle que :

Pour tout caractère de Dirichlet quadratique impair % de conducteur
d ^ 7 tel que %(NE) 1, il existe un point P e E(Q) tel que

L'e(1)Le(x, 1) cEh(P).

Ce théorème peut être utilisé pour résoudre le problème laissé en suspens

au paragraphe précédent, à savoir vérifier si L'E( 1) 0: pour cela, on
choisit un caractère de Dirichlet % comme ci-dessus pour lequel LE(%, 1) ^ 0

(ceci est toujours possible, d'après un théorème de Waldspurger, et on trouve
facilement un tel % lorsque E est choisie). Comme on dispose de majorations
de L£(x, 1), de la valeur approchée de cE et de minorations des h(P) non
nuls lorsque P décrit E(Q), il suffit alors pour conclure à la nullité de

L'e{ 1} de montrer que L'E( 1) est assez petit, ce qu'un calcul sur ordinateur

permet de faire.

§ 9. Conclusion

Gross et Zagier ont vérifié que la courbe elliptique d'équation (minimale) :

+ y x3 _ x2 _ 450823x + 112971 139

satisfait aux exigences du § 6. En calculant la constante cE correspondante
(cf. pour cela mon exposé au Séminaire Bourbaki), on obtient

h(-d) 3 => log d « 21000

h(-d) 4 => log d < 336000

h{ — d) 5 => log d ^ 35 000

h(-d) 6 => log d < 168 000

^ B. H. Gross et D. B. Zagier, Heegner points and derivatives of L-series,
Inv. Math. 84 (1986), 225-320.
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D'autres courbes elliptiques de Weil E telles que E(Q) soit de rang 3,

trouvées par Mestre,

y2 + y x3 — Ix + 6 (NE 5 071)

y2 + y Xs — x + 6 (iV£=16 811)

y2 y — x2 — \9x + 30 (NE 43 669),

permettent d'obtenir de meilleures majorations :

h(-d) 3 => log d ^ 165

h(-d) 4 => log d ^ 2 640

h{-d) 5 => log d ^ 275

h(-d) - 6 => log d ^ 1320

etc.

Pour achever complètement de résoudre le problème du nombre de

classes, il reste en fait à vérifier qu'en-dessous des bornes précédentes
les seuls d pour lesquels h( — d) vaut 3, 4, 5, 6, etc. sont ceux qui figurent
dans la table de Buell. Il devrait être possible de le faire en reprenant les

calculs de Stark et Montgomery-Weinberger évoqués au § 5. Pour l'instant,
cela n'a été fait que pour h 3 (par Montgomery et Weinberger), et pour
h 4 (par Arno).

(Reçu le 30 mars 1987)

J. Oesterlé

Université Paris VI
UER Mathématiques
4, place Jussieu
75230 Paris Cedex 05
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