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284 P.J. BRAAM

§ 3. CLASSIFICATION OF I' witH dimgA(l) < 1

In the previous section we constructed a compact, oriented, conformally
flat 4-manifold X starting from a suitable (see §2) hyperbolic 3-manifold.
By Schoen’s solution of the Yamabe problem [33] there is a metric in the
conformal class of X, for which the scalar curvature is a constant. The
sign of this constant —, O or + is called the type of X. A lot is known
about X of non-negative type, and we shall classify 3-manifolds M which
give rise to X of non-negative type.

In a different direction Schoen and Yau [34] proved that if X is
the quotient of S* — A by a discrete group of conformal transformations,
then X is of type +, 0, — if and only if the Hausdorff dimension of A satisfies
that dimy A — 1 is negative, zero, positive respectively. Hence our classifi-
cation is that of M for which dimyz A < 1. The classification for
dimy; A = 1 seems to be new, for < 1 the result was known.

Up to now, the only Kleinian groups to have been classified are the
so called function groups, those Kleinian groups which leave a component
of Q = S§? — A invariant. This has been done by Maskit. A special case
of this, which we shall use repeatedly below, occurs when Q is connected.
In this case the Kleinian group is Schottky (see example 2.5).

THEOREM 3.1.

a) If the type of X is + then M is a handlebody equal to H?/T
with I" a Schottky group.

b) If the type of X is O then one of the following holds :

1) M equals R x S = H>/T with T Fuchsian and S a compact
surface.

2) M equals H?/T" with T extended Fuchsian (see example 2.3 (3)).
3) M is a handlebody as in a).

Proof. a) R > 0 implies dimyA < 1, see the proof of proposition 3.3
of Schoen and Yau [34]. This implies that (I') is connected, because a set
of Hausdorff dimension smaller than 1 cannot disconnect S?. By Maskit’s
classification theorems (see Maskit [27]) it follows that I'" is Schottky.

b) First assume H*X,R) # 0 and give X a metric of zero scalar
curvature in the conformal class. From proposition 2.2 we see that the
intersection form is indefinite, so there i1s a self-dual harmonic 2-form ®
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on X. A Weitzenbock formula asserts that on 2-forms (d +d*)* = V*V with V
the total covariant derivative. It follows that o is covariantly constant, and a
multiple of ® serves as Kéhler form for an integrable complex structure
on X: compare LeBrun [24]. LeBrun proceeds to classify these as (1)
a K3 surface, (2) a four dimensional torus modulo a finite group and (3)
a flat CP! bundle with the local product metric, over a Riemann surface §
which carries a metric of curvature — 1. From proposition 2.2 we see that
only (3) is possible in our case because (1) has the wrong Euler characteristic,
and (2) with Euler characteristic 0 should have had H,(X;R) = 0.

The Kéhler form of X is the unique self-dual harmonic 2-form on X.
This is preserved by the conformal S*-action, thus the action is a holomorphic
action on X. As a result the vector field v induced by the S!-action on X
is holomorphic. The fibration n: X — CP! helps us further: we get a map
mye: TX —» n*TS and n,v is a section of w*TS. Such a section is constant
on fibres, so it is a pull-back of a section of T'S. The only holomorphic
section of T'S is 0; so v 1s a vertical vector field.

From theorem 2.1 we see that zeroes of v must be simple, hence two
per fibre. One of these is a sink, the other a source of i-v so we get
two sections S — X. This proves that X is the projectivization of a direct
sum of holomorphic line bundles, say X = P(L,®L,). The next step is to
remember that the circle bundle X — [P(L,)UP(L,)] over H*/T" may have no
monodromy. Infinitesimally this implies that L, ® L¥ is a trivial line bundle.
So X = S x CP! and consequently I must be Fuchsian.

Next we come to the case H*X,R) = 0. If S> — A has only one
component then we can apply Maskits classification theorem as in a), and
conclude that I' is Schottky; therefore we shall concentrate on the case
that Q has at least two components.

If Q, is one of these components then the stabilizer 'y = I' of Q,
is a geometrically finite Kleinian group, and has Q, as a component, see
Marden [26] corollary 6.5 (it should be remarked that subgroups are not
automatically geometrically finite). As S* — Q, is T'-invariant and has
non-empty interior, it follows that H*/T';, must have at least two ends. By
formula 2.5 and the fact that dimzA(Ty) < dimzA(I) < 1, the above implies
that I'y is Fuchsian. Thus every component of Q is a round disc.

Before we proceed let us briefly recall what effect a conformal rescaling
of the metric has on the scalar curvature. If on the 4-manifold X one has

1 1
g; = u*-g, then 6-u3 ‘R(g,) = (d*du+g R(go)u), where d* is taken with

respect to go. Since here metrics of zero scalar curvature are involved, this
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equation loses its nonlinear character. An immediate consequence is that
metrics of zero scalar curvature are unique up to constants multiples and
hence S'-invariant.

We have the hyperbolic covering H*/T', — H>/T", and on the 4-manifolds
corresponding to each of these there exists an Sl-invariant metric of zero
scalar curvature. Denote these by g, and g, and denote the hyper-
bolic metric on the 3-manifolds by g,. Then we have positive functions
uo: H3/Ty » R.yand u: H3/T - R, ,suchthatg, = u2-g,andg = u?-g,.
By the above u, and u are in the kernel of (d*d—1) on H?3/T, and
H?/T respectively (here d* is w.r.t. the hyperbolic metric).

Results of Sullivan [36] imply that positive solutions of d*d — 1 on
H?/T, are unique (up to positive scalar factors) as dimzA(I",) = 1. Therefore
the pullback of u equals u,, and hence the cover X, — (S;US,) - Xr — S,
is an isometry (S; are the fixed surfaces). The map can readily be extended
to an isometry X — S, - Xr and then extends to a double cover
X, = Xr. It follows that I" is extended Fuchsian as claimed. |

0

Reformulating in terms of Kleinian groups gives:

COROLLARY 3.2. Let T' be a geometrically finite Kleinian group without
cusps. If dimgA(I) < 1, then T is Schottky. If dimyzA(I') = 1 then T
is Schottky, Fuchsian or extended Fuchsian.

Proof. We shall see in section 7 that dimgA(I') < 1 implies that the type
of X 1s +, which is essentially an old observation due to Poincaré.
Together with the results of Schoen and Yau mentioned in the proof above,
the corollary is now obvious. O]

Remark. 1) Existence of Schottky groups with limit set of any dimension
smaller than 2 has been proved (Thurston [37]).

2) In Schoen & Yau [38] and Gromov & Lawson [15] the conclusion
is drawn that for so-called classical Schottky groups I' the manifold X
admits a metric of positive constant scalar curvature.

4) R. Bowen [9] has proved that any quasifuchsian group with
dimyzA = 1 is Fuchsian. Of course this is a special case of theorem 3.1.

It will be interesting to see if further developments in the theory of
compact, 4-dimensional, conformally flat manifolds are going to have similar
applications to Kleinian groups. On the other hand it seems likely that a
purely 3-dimensional proof of theorem 3.1 could be found as well. The crucial
element seems to be to exploit the existence of a harmonic two form, in
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the way Lebrun did. LeBrun arrives at his flat CP! bundle through a
foliation argument which presumably can be mimicked in the 3-manifold.

§4. HODGE THEORY FOR HYPERBOLIC 3-MANIFOLDS

Apart from the topological and geometrical applications which we
discussed in § 3, our Kaluza-Klein approach also has some more analytical
applications.

Recall that the Hodge-star #: Q"(Y) — Q(Y), on a 2n-dimensional oriented
Riemannian manifold Y, depends only on the conformal structure underlying
the metric. This has two consequences:

1) The L*norm |o|?> =0 A *o, of 0eQ'(Y), is conformally
invariant.

2) The harmonic n-forms, i.e. the ® € Q*(Y) s.t. do = d*o = 0, depend
only on the conformal structure of Y.

Of course conformal rescaling lies at the heart of our construction
in § 2, and we shall now show how the above applies to this situation. Let X
be the conformal compactification of M x S' as in § 2. Harmonic 2-forms
on X are automatically S’-invariant because they are in one-one cor-
respondence with the elements of H*X ;R)(=H*M ;R) @ H(M, 3M ; R),
see §2). By restriction to the open subset M x S' = X and a conformal
rescaling of the metric on M x S, 2) above implies that we get Sl-invariant
harmonic 2-forms on M x S! with respect to the product metric.

An S'-invariant form can be written as ® = p*a + p*B A dO, with
ae Q*(M), Be QM) and p: M x S'! - M the projection. A short com-
putation shows that such S'-invariant forms ® are harmonic iff o and B
are harmonic on M. If © is a harmonic 2-form on M x S! arising from
a form on X then it follows from proposition 2.2 that o e Q*M) and
BeQ'(M) are harmonic representatives for the class e H*(M;R)
® H'(M,dM ;R). The forms o and B have finite L?>-norm on M by 1)
above.

Conversely any S'-invariant, harmonic 2-form @ on M x S® with finite
L*-norm arises in this way. By 1) above one can always consider @ to be
an L*-form o on X because U S; = X\M x S* has measure 0. Applying
the first order elliptic operator d @ d* to w gives a distributional form in
L% (A*(X)) of distributional order < 1, which has support in the co-
dimension 2 manifold U;S; = X. The following lemma shows that this
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