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§ 3. Classification of F with dim#A(F) ^ 1

In the previous section we constructed a compact, oriented, conformally
flat 4-manifold X starting from a suitable (see § 2) hyperbolic 3-manifold.

By Schoen's solution of the Yamabe problem [33] there is a metric in the

conformai class of X, for which the scalar curvature is a constant. The

sign of this constant —, 0 or + is called the type of X. A lot is known
about X of non-negative type, and we shall classify 3-manifolds M which
give rise to X of non-negative type.

In a different direction Schoen and Yau [34] proved that if X is

the quotient of S4 — A by a discrete group of conformai transformations,
then X is of type +, 0, — if and only if the Hausdorff dimension of A satisfies

that dim# A — 1 is negative, zero, positive respectively. Hence our classification

is that of M for which dim# A ^ 1. The classification for

dim# A 1 seems to be new, for < 1 the result was known.

Up to now, the only Kleinian groups to have been classified are the

so called function groups, those Kleinian groups which leave a component
of Q, S2 — A invariant. This has been done by Maskit. A special case

of this, which we shall use repeatedly below, occurs when £2 is connected.

In this case the Kleinian group is Schottky (see example 2.5).

Theorem 3.1.

a) If the type of X is + then M is a handlebody equal to H3/F
with T a Schottky group.

b) If the type of X is 0 then one of the following holds :

1) M equals R x S H3/F with T Fuchsian and S a compact
surface.

2) M equals H3/T with F extended Fuchsian (see example 2.3 (3)).

3) M is a handlebody as in a).

Proof, a) R > 0 implies dim#A < 1, see the proof of proposition 3.3

of Schoen and Yau [34]. This implies that Q(T) is connected, because a set

of Hausdorff dimension smaller than 1 cannot disconnect S2. By Maskit's
classification theorems (see Maskit [27]) it follows that F is Schottky.

b) First assume H2(X, R) / 0 and give X sl metric of zero scalar

curvature in the conformai class. From proposition 2.2 we see that the

intersection form is indefinite, so there is a self-dual harmonic 2-form co
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on X. A Weitzenbock formula asserts that on 2-forms (d + d*)2 V*V with V

the total covariant derivative. It follows that go is covariantly constant, and a

multiple of co serves as Kähler form for an integrable complex structure

on X : compare LeBrun [24]. LeBrun proceeds to classify these as (1)

a K3 surface, (2) a four dimensional torus modulo a finite group and (3)

a flat CP1 bundle with the local product metric, over a Riemann surface S

which carries a metric of curvature — 1. From proposition 2.2 we see that

only (3) is possible in our case because (1) has the wrong Euler characteristic,
and (2) with Euler characteristic 0 should have had H2(X;R) 0.

The Kähler form of X is the unique self-dual harmonic 2-form on X.
This is preserved by the conformai S1-action, thus the action is a holomorphic
action on X. As a result the vector field v induced by the S1-action on X
is holomorphic. The fibration n:X CP1 helps us further: we get a map

TX -> 7i*TS and n^v is a section of n*TS. Such a section is constant
on fibres, so it is a pull-back of a section of TS. The only holomorphic
section of TS is 0; so v is a vertical vector field.

From theorem 2.1 we see that zeroes of v must be simple, hence two
per fibre. One of these is a sink, the other a source of i • v so we get
two sections S -> X. This proves that X is the projectivization of a direct
sum of holomorphic line bundles, say X The next step is to
remember that the circle bundle X — [P{L0)vP(L1)'] over H3/T may have no
monodromy. Infinitesimally this implies that L0 ® L f is a trivial line bundle.
So X S x CP1 and consequently T must be Fuchsian.

Next we come to the case H2(X, R) 0. If S2 — A has only one
component then we can apply Maskits classification theorem as in a), and
conclude that F is Schottky; therefore we shall concentrate on the case
that Q has at least two components.

If £20 is one of these components then the stabilizer ro c= T of Q0
is a geometrically finite Kleinian group, and has Q0 as a component, see
Marden [26] corollary 6.5 (it should be remarked that subgroups are not
automatically geometrically finite). As S2 - Q0 is T-invariant and has

non-empty interior, it follows that H3/T0 must have at least two ends. By
formula 2.5 and the fact that dimHA(ro) ^ dimHA(r) ^ 1, the above implies
that r0 is Fuchsian. Thus every component of Q is a round disc.

Before we proceed let us briefly recall what effect a conformai rescaling
of the metric has on the scalar curvature. If on the 4-manifold X one has

9i u2 • g0 then - • u3 • R(ôq) (d*du + — R(g0)u), where J* is taken with

respect to g0. Since here metrics of zero scalar curvature are involved, this
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equation loses its nonlinear character. An immediate consequence is that
metrics of zero scalar curvature are unique up to constants multiples and
hence S1-invariant.

We have the hyperbolic covering H3/T0 -> H3/T, and on the 4-manifolds

corresponding to each of these there exists an S1-invariant metric of zero
scalar curvature. Denote these by g0 and g, and denote the hyperbolic

metric on the 3-manifolds by gh. Then we have positive functions

u0 : H3/T0 - R>0 and u: H3/T R>0 such that g0 u§ • gh and g u2 • gh.

By the above u0 and u are in the kernel of (d*d— 1) on H3/T0 and

H3/T respectively (here d* is w.r.t. the hyperbolic metric).
Results of Sullivan [36] imply that positive solutions of d*d — 1 on

H3/T0 are unique (up to positive scalar factors) as dim#A(r0) — 1. Therefore
the pullback of u equals u0, and hence the cover XTo — (S,1UiS2) -> Xr — S1

is an isometry (St are the fixed surfaces). The map can readily be extended

to an isometry XTo — S2 XT and then extends to a double cover
XTo -> XT. It follows that T is extended Fuchsian as claimed.

Reformulating in terms of Kleinian groups gives :

Corollary 3.2. Let T be a geometrically finite Kleinian group without

cusps. If dimiîA(r) < 1, then T is Schottky. If dimHA(T) 1 then T
is Schottky, Fuchsian or extended Fuchsian.

Proof. We shall see in section 7 that dim#A(r) < 1 implies that the type
of A is +, which is essentially an old observation due to Poincaré.

Together with the results of Schoen and Yau mentioned in the proof above,
the corollary is now obvious.

Remark. 1) Existence of Schottky groups with limit set of any dimension
smaller than 2 has been proved (Thurston [37]).

2) In Schoen & Yau [38] and Gromov & Lawson [15] the conclusion
is drawn that for so-called classical Schottky groups T the manifold XT
admits a metric of positive constant scalar curvature.

4) R. Bowen [9] has proved that any quasifuchsian group with
dim#A 1 is Fuchsian. Of course this is a special case of theorem 3.1.

It will be interesting to see if further developments in the theory of

compact, 4-dimensional, conformally flat manifolds are going to have similar

applications to Kleinian groups. On the other hand it seems likely that a

purely 3-dimensional proof of theorem 3.1 could be found as well. The crucial
element seems to be to exploit the existence of a harmonic two form, in
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the way Lebrun did. LeBrun arrives at his flat CP1 bundle through a

foliation argument which presumably can be mimicked in the 3-manifold.

§ 4. Hodge theory for hyperbolic 3-manifolds

Apart from the topological and geometrical applications which we

discussed in § 3, our Kaluza-Klein approach also has some more analytical

applications.
Recall that the Hodge-star * ; Qn(7) -> Qw( Y), on a 2n-dimensional oriented

Riemannian manifold Y, depends only on the conformai structure underlying
the metric. This has two consequences :

1) The L2-norm || co ||
2 j co A *©, of co g QW(Y), is conformally

invariant.

2) The harmonic n-forms, i.e. the co g Q"(Y) s.t. d(ù d*co — 0, depend

only on the conformai structure of Y.

Of course conformai rescaling lies at the heart of our construction
in § 2, and we shall now show how the above applies to this situation. Let X
be the conformai compactification of M x S1 as in § 2. Harmonic 2-forms

on X are automatically S1-invariant because they are in one-one
correspondence with the elements of H2(X ; R) H2(M ; R) © H1(M, 5M ; R),

see § 2). By restriction to the open subset M x S1 cz X and a conformai
rescaling of the metric on M x S1, 2) above implies that we get S1-invariant
harmonic 2-forms on M x S1 with respect to the product metric.

An S1-invariant form can be written as co p*a + p*ß A dQ, with
a g Q2(M), ß g QX(M) and p : M x S1 ->• M the projection. A short
computation shows that such S1-invariant forms co are harmonic iff a and ß

are harmonic on M. If co is a harmonic 2-form on M x S1 arising from
a form on X then it follows from proposition 2.2 that a g Q2(M) and
ß g QX(M) are harmonic representatives for the class co g H2(M ; R)
© H1(M, 5M ; R). The forms a and ß have finite L2 -norm on M by 1)

above.

Conversely any S1-invariant, harmonic 2-form rô on M x S1 with finite
L2-norm arises in this way. By 1) above one can always consider co to be

an L2-form co on X because u Sj X\M x S1 has measure 0. Applying
the first order elliptic operator d©d*toco gives a distributional form in
^ - i(A*(20) of distributional order < 1, which has support in the co-
dimension 2 manifold u jSjczX. The following lemma shows that this
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