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objects with support in the limit set can be obtained. The twistor spaces
may provide a natural environment to study theorems about the 3-manifold
which rely on properties of the geodesic flow. In particular one could try
to prove Mostow’s theorem (and Thurston’s generalisation of it) along the
lines outlined in § 6.

From an analytical study of monopoles it is known that monopoles
exist under reasonable conditions. This shows that there are interesting
holomorphic bundles on twistor space. Understanding the structure of these
will almost certainly reveal a large amount of geometry and analysis
associated to the hyperbolic manifold. Finally, properties of the moduli
spaces of monopoles which are independent of the metric on the 3-manifold
are topological invariants of the 3-manifold. This is related to the work of
Donaldson and Casson.
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§ 2. CONFORMAL COMPACTIFICATIONS AND THEIR TOPOLOGY

Let M be an oriented, irreducible, atoroidal, compact, three-dimensional
manifold with non-empty boundary 8M. Atoroidal means that every map
T? - M has a kernel on the level of fundamental groups. For simplicity
we shall avoid cusps and thus we assume that:

2.1 either no component of SM is of genus 1 or M = D? x S!.

Thurston’s uniformization theorem (see Morgan [29]) asserts that there is
a complete, geometrically finite, hyperbolic structure on M = M — $M. This
means that M can be realised as follows (see Bers [7], Maskit [27],
Morgan [29], Beardon [6] for background).

Recall that PSL(2, C) = SL(2, C)/{ £ 1} is the isometry group of hyperbolic
3-space H?, and that the right action of an isometry on H* = SU2)\SL(2, C)
extends over the boundary S? = §H® as an action by a fractional linear
transformation of S®. A Kleinian group T without cusps 1s a discrete
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subgroup of PSL(2, C) all elements of which are loxodromic (i.e. have
exactly two fixed points in H>= H® U $?), and which acts freely and
properly on a non-empty open set Q < S? (Felix Klein, the man of the
dicrete groups, and Oscar Klein, of the Kaluza-Klein theories mentioned in
the introduction, are not the same). Proper means that the map Q x I
- Q x Q:(x,v) - (xy, x) is proper. Proper actions are well behaved, and a
proper free action has a smooth quotient, see Gleason [14].

There 1s a preferred region Q(I'), in which I' acts properly. Define the
limit set A(I') of the group I'" to be the set of all yeS? such that there
is a sequence of different elements y;eI' and an x e S* with y;-x — y.
The region of discontinuity Q(T) is the complement S? — A(I'), and T' acts
properly on Q(I'). The limit set may be quite wild and has Hausdorff
dimension dimyzA(I') € [0, 2]. If no confusion is possible we shall denote
Q") by Q and A(T') by A.

The number of components of Q is 1, 2 or infinite, and Q/T" is a
collection of N Riemann surfaces S,, .., Sy, where N is the number of
I'-orbits in the set of components of Q (N can be infinite). It is well known
that the I'-action on H?® is proper and that it extends to a proper action
on H?® — A; therefore (H®>—A)/I" is a smooth manifold with boundary
QI = u;S;.

In order to ensure that (H>—A)/I" is compact we introduce another
notion. The group I' is said to be geometrically finite iff there is a finitely
sided fundamental polyhedron (Maskit [27]) for the I'-action on H?>. In this
case the quotient M = H3/I" is the interior of a compact, smooth manifold
M = (H*—A)/T" which has boundary M = QT, now equal to a finite
collection of compact Riemann surfaces without boundary. In this case the
hyperbolic structure on M is said to be geometrically finite. If I' = {e}
we have N = 1, S; = S% and if " is cyclic then N = 1, S; = T?; in both
of these cases Q is connected. In all other cases every S; is a surface of
genus > 2.

The conjugacy class of I' in PSL(2, C) is not uniquely determined by M
as a smooth manifold; in fact continuous deformations of the complete
hyperbolic structure on M can be realized by deforming the embedding
I' - PSL(2, C). Thus the situation is much the same as that for Riemann
surfaces, which also admit families of hyperbolic structure (or equivalently
complex structures).

As a metric space, M endowed with such a hyperbolic structure is
highly non-compact, and the boundary surfaces lie at infinity, i.e. they are the
celestial surfaces in M. Following the physical idea of a Kaluza-Klein theory
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we shall study the fibre bundle M x S* over M instead of M itself.
Another popular notion in physics is that of a conformal compactification:
M x S' has a natural conformal compactification X without boundary
(or X if we want to indicate the dependence on I'), i.e. there is an injective
conformal immersion M x S! — X onto a dense subset. To get X we spin M
around 8M, see figure 1, ie. X is M x S! with the circles over 8M
identified to a point. This gives a compact 4-manifold X with an S!-action.
The action is free away from the fixed point set, which is isomorphic to the
boundary 8M = U;_; »S;. The normal bundles of the S; are trivial and of
S'-weight 1. For example take M = S x R with S a surface. Then X is
the compactification of S§ x R x S = § x C* thatis X = S x S?, where S*
acts on S* by earth rotation and has two fixed surfaces S x {0, 0} in X.

Component of 6M =
s'-fixed surface

end of M

'S1 -orbits

FIGURE 1.

In order to relate the hyperbolic structure on M to a conformal structure
on X we proceed more formally. Recall that H® = {(x,y,t)eR®;t > 0}
with metric ds* = (dx?+dy?+dt?)/t2. It follows that: |

2.2 i: H® x Sl’—1»(R26—)R‘7‘)—(R?‘EBO)E’R‘L——R2 > 84 §2.
((x, y,£),8) > (x, y, tcos 9, ¢ sin 9)

is an orientation preserving, conformal difftomorphism. The map i intertwines
 the S*-action on H® x S§* with rotations in the second summand of R2 @ R2.
- The S*-action extends to $* with fixed point set §2 = (R2@0) U {00} = §*.
+ This fixed point set corresponds to §H> x S! under:
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2.3 it H? x St > §*,

the continuous extension of i. To get further we shall show that the
compactification S* of H® x S?! is natural enough to transfer group actions
from H? to S* The maps i and i’ are equivariant with respect to the group
St x PSL(2, C), which will act on the right on S* by conformal transfor-
mations. To see this, recall that the PSL(2, C)-action on S* which is the
quaternionic projective line HP' = H*\(H?>—{0}) (ie. divide out the left
action of multiplication by invertible quaternions), is by fractional linear
transformations:

2.4 ([x, v, [Z ZD = [xa+ yb, xc+ yd]

As a result a geometrically finite Kleinian group I' acts on S* The
limit set A’ of the I'-action on S* equals (A x S?), so it is contained in the
St-fixed point set S* = S* Clearly A’ is isomorphic to A, and we shall
simply identity A and A’. The restriction:

i (H*—A) x St - §* — A

1s proper, equivariant and surjective. This implies immediately that the
I-action on S* — A is proper. Since I' is geometrically finite the quotient
X = ($*—A)/T is compact and without boundary. Finally, the fact that the
I-action is free ensures that X is smooth and inherits a smooth S*-action.

The S*-action is free away from the fixed surfaces S;, which correspond
as conformal surfaces to Q/I' = BH>—A)/T = I(SH>*—A)xSY)I. It is

useful to realise that i and i’ induce mapsi: M x S* - Xandi': M x S' - X.
Summarizing we have proved:

TuEOREM 2.1. Let M be an oriented, geometrically finite, complete
hyperbolic 3-manifold with non-empty boundary M = U S ; satisfying 2.1.
Then M x S' has an oriented, smooth conformal compactification X
(without boundary) upon which S' acts. X is conformally flat and the
St-action is free away from its fixed surfaces S;(j=1, .., N) which correspond
as conformal surfaces to the boundary surfaces of M. The normal bundles
N; of S; in X are topologically trivial and of S'-weight 1. The
hyperbolic structure on M can be reconstructed from X by giving
X —(US;) that metric in the conformal class for which the S*-orbits have
length  2n. Then M is the Riemannian quotient of X — (u;S;)

by S O
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Remark. It is worth pointing out that if one chooses an equatorial
embedding of S in S"*! then any conformal transformation of 5" extends
uniquely to a conformal transformation of §"*1 leaving invariant the com-
ponents S"*! — S" Thus if T'" is a group acting on S” then it also acts
on S"*1. A Kleinian group can be thought of as a group acting on S°
with limit set in an equatorial S2. Theorem 2.1 now says that if T is
geometrically finite and purely loxodromic then in S* we have A(I) = S?
= §* and I)/T is a compact 4-manifold.

The existence of a conformal compactification is not automatic. It is
easy to see that R® x S! cannot be compactified by adding an S? at
infinity.

The topology of X is easily described:

PROPOSITION 2.2.

a) m,(X,m) = n,(M,m) for meS; (S, a fixed or boundary surface).
b) There are natural isomorphisms H (M, 8M ;Z) - Hy(X ;Z) and

Hy(M;Z) @ H\(M, 8M;Z) - Hy(X ;Z)

The two summands of H,(X;Z) (modulo torsion) are isotropic and dual to
each other under the intersection form Q on H,(X;Z); consequently the

0 1 ~
signature o(X) = 0, and Q = n times [1 0], with n = tk H,(M ; Z).

¢) n(X) = Z;x(S;) with v denoting the Euler characteristic.

d) Spin structures on X exist and the double cover of S* acts naturally
and effectively on any spin structure.

Proof. a) Of course this is what one expects to be true: n (M x S, m)
> n,(M, m) x Z, but the Z factor is killed by shrinking the circles to a
point. Formally, remark that a tubular neighbourhood of U §; looks like
(U S;) x D?, and apply the Seifert-van Kampen theorem.

b) Define j: M — X by j(m) = i'(m, 1). Up to S'-rotation j is defined
uniquely by the conformal structure of X. This induces a homomorphism
Ju: H,(M;Z) —» H,(X ;Z). Next remark that if ¢ is a chain in C; (M, 3M ; Z)
then i’ (cxS") is a chain in C;, (X ;Z), because the circle shrinking to
a point enforces 8i’(cxS') = 0. Taking a careful look at the Mayer-
Vietoris sequence applied to (U S;) x D* and M x S' shows that this
gives natural isomorphisms as indicated in the proposition. The pro-

pertigs of the inzersegtion form Q follow from the intersection pairing:
H,M;Z) x H(M, M ;Z) - Z.

c) This 1s easy, using either a and b, or equivariant Lefschetz formulas.



282 P. J. BRAAM

d) Every orientable 3-manifold admits a spin structure, see Stiefel [35].
Give S' the spin structure corresponding to the connected double cover,
which extends to the disc in R?; therefore a product spin structure on
M x S' extends to X. Clearly every spin structure on X arises in this
way. The double cover of S! is needed to define an action on the spin
structure of the orbits in X. O

The spin bundle of H?® is the Spin(3) = SU(2) bundle SL(2,C) — H?>
= SU2)\SL(2, C); thus a spin structure on X is in fact nothing else but
a lift of the homomorphism r: I" - PSL(2, C) which defines M, to a homo-
morphism ' : I" —» SL(2, C).

If N denotes the number of boundary components of M (as before)
then it follows from the exact sequence of the pair (M, 0M) that:

2.5 tk Hy(X:Z) = 2-tk H,(M,8M;Z) > 2-(N—1)
Another useful fact to keep in in mind is:
2.6 rk {ker (H,(8M ;Z) » H,(M ;Z))} = 3.tk H,(3M ;Z),

which can easily be deduced from Alexander duality and the exact sequence
of the pair (M, 6M).

A 0
Examples 2.3. 1) If T is the cyclic group generated by |:0 7\‘1} with

A € C* then the limit set equals {0, co} in the coordinates on 8H> supplied
by the upper half space model. It is easy to see that M = H>/T' = D? x S
To find X, it is easiest to divide out the I'-action on S* — A = C*> — {0}
which is given by (zq, z;) = (A*zo, | A |%z;). As a result X is a Hopf surface
difftomorphic to S® x S'. The S'-action is given by (zq, z1) — (2, €°z}),
so the fixed surface is the two-torus C*/<A?*>.

2) If T is Fuchsian, i.e. T = PSL(2, R), then H?/T" is a compact Riemann
surface without boundary S of genus > 2 with metric ds®. The 3-manifold M
is difftomorphic to R x S with metric given by dI*> + cosh?l - ds*. Clearly it
follows that X must be diffeomorphic to S% x S. A little computation
shows that X is even conformally equivalent to S? x S. Thus X is con-
formally equivalent to the Kéhler surface CP* x S.

From the point of view of Kleinian groups, we remark that Q is the °
union of two round discs which are both invariant under I'. The limit
set is a smooth circle.

3) A Kleinian group I'" which is not itself Fuchsian, but which contains
a Fuchsian subgroup I', of index two is said to be an extended Fuchsian
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group. For details see Maskit [28]. The limit sets A(I'y) and A(I') are equal,
and any yeI' — I', swaps the two components of . Such an element vy
also gives rise to a fixed-point-free, orientation reversing involution o of §
(compare 2), and one deduces from this that M = H3/T is a nontrivial
R-bundle over S/c. Remark that 8M = S.

A standard way to get more interesting 3-manifolds is through the
Klein-Maskit combination theorems (Maskit [27], Morgan [29]). We shall
explain how the simplest of these relates to the 4-manifolds involved.
Let I'y and T'; be geometrically finite groups without cusps and M; = H>/T;.
Every pair of points x; € M ; has neighbourhoods K; in M; isometric to a
hyperbolic half space i.e. to a component of H> — H? The H; = 3K; — 8M;
are embedded in M; and 8H? n M; = H? n 8M, are circles which bound
discs in 6]\7Ij. Define M = M, # M, to be Mo\K, v, M \K,, where p is
an isometry 8K, — 8K ;. The metric structure of M = M, # M, depends
on p, the choice of x; and the choice of the half spaces K;. M is called a
boundary connected sum of My and M, .

The first combination theorem expresses the fact that M = H3/T" with
I a Kleinian group which is isomorphic to the free product of I'y and
I'y. In PSL(2,C) the.group I' is generated by I'y, and gI';g~! for a
suitable g € PSL(2, C). It is easy to verify this.

Reverting to-the 4-manifolds, we see that we are identifying, by S*-equi-
variant conformal maps, balls B; around the points x; in the fixed surfaces.
Thus X equals X, # X, with # now denoting a conformal connected
sum. Summarizing we get:

PROPOSITION 2.4.  If I is the Kleinian group corresponding to a boundary
connected sum of H>/Ty and H3/U; then T is a Kleinian group such
that Xy is the S'-equivariant conformal connected sum of Xr, and Xr,
at points in the fixed surfaces.

Example 2.5. A classical Schottky group T of genus g is a free product
of g cyclic groups (compare example 2.3 (1)), formed as in the gluing
construction described before proposition 2.4. The 3-manifold M. is a handle-
body of genus g, and by proposition 2.4, Xr equals the connected sum
(S®x SY*9. In fact if T is any geometrically finite free Kleinian group without
cusps, then H/T" is a handlebody; this follows from standard results in

3-manifold topology (see Hempel [17]). We shall refer to such free groups as
Schottky groups.
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