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objects with support in the limit set can be obtained. The twistor spaces

may provide a natural environment to study theorems about the 3-manifold

which rely on properties of the geodesic flow. In particular one could try
to prove Mostow's theorem (and Thurston's generalisation of it) along the

lines outlined in § 6.

From an analytical study of monopoles it is known that monopoles
exist under reasonable conditions. This shows that there are interesting

holomorphic bundles on twistor space. Understanding the structure of these

will almost certainly reveal a large amount of geometry and analysis
associated to the hyperbolic manifold. Finally, properties of the moduli

spaces of monopoles which are independent of the metric on the 3-manifold

are topological invariants of the 3-manifold. This is related to the work of
Donaldson and Casson.
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§ 2. CONFORMAL COMPACTIFICATIONS AND THEIR TOPOLOGY

Let M be an oriented, irreducible, atoroidal, compact, three-dimensional
manifold with non-empty boundary 5M. Atoroidal means that every map
T2 -» M has a kernel on the level of fundamental groups. For simplicity
we shall avoid cusps and thus we assume that :

2.1 either no component of 8M is of genus 1 or M D2 x S1

Thurston's uniformization theorem (see Morgan [29]) asserts that there is
a complete, geometrically finite, hyperbolic structure on M M - SM. This
means that M can be realised as follows (see Bers [7], Maskit [27],
Morgan [29], Beardon [6] for background).

Recall that PSL(2, C) SL(2, C)/{ + 1} is the isometry group of hyperbolic
3-space H3, and that the right action of an isometry on H3 SU(2)\SL(2, C)
extends over the boundary S2 bH3 as an action by a fractional linear
transformation of S2. A Kleinian group F without cusps is a discrete
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subgroup of PSL(2, C) all elements of which are loxodromic (i.e. have

exactly two fixed points in H3 H3 u S2), and which acts freely and

properly on a non-empty open set Q a S2 (Felix Klein, the man of the
dicrete groups, and Oscar Klein, of the Kaluza-Klein theories mentioned in
the introduction, are not the same). Proper means that the map Q x r
-» D x Q : (x, y) -> (xy, x) is proper. Proper actions are well behaved, and a

proper free action has a smooth quotient, see Gleason [14].
There is a preferred region D(r), in which T acts properly. Define the

limit set A(T) of the group Y to be the set of all y e S2 such that there
is a sequence of different elements y} g T and an xeS2 with yj' x -> y.
The region of discontinuity Q(T) is the complement S2 — A(T), and T acts

properly on D(r). The limit set may be quite wild and has Hausdorff
dimension dimHA(r) g [0, 2]. If no confusion is possible we shall denote

D(T) by Q and A(T) by A.
The number of components of D is 1, 2 or infinite, and Q/r is a

collection of N Riemann surfaces Sx,..., SN, where N is the number of
T-orbits in the set of components of Q (N can be infinite). It is well known
that the T-action on H3 is proper and that it extends to a proper action

on H3 — A; therefore (H3 — A)/T is a smooth manifold with boundary
Q/r ujSJ.

In order to ensure that (H3 — A)/Y is compact we introduce another
notion. The group T is said to be geometrically finite iff there is a finitely
sided fundamental polyhedron (Maskit [27]) for the T-action on H3. In this

case the quotient M H3/Y is the interior of a compact, smooth manifold
M (H3 — A)/T which has boundary 8M D/T, now equal to a finite
collection of compact Riemann surfaces without boundary. In this case the

hyperbolic structure on M is said to be geometrically finite. If Y {e}
we have N 1, Sx S2, and if Y is cyclic then N 1, T2 ; in both
of these cases D is connected. In all other cases every Sj is a surface of

genus ^ 2.

The conjugacy class of Y in PSL(2, C) is not uniquely determined by M
as a smooth manifold; in fact continuous deformations of the complete

hyperbolic structure on M can be realized by deforming the embedding
T -> PSL(2, C). Thus the situation is much the same as that for Riemann

surfaces, which also admit families of hyperbolic structure (or equivalently
complex structures).

As a metric space, M endowed with such a hyperbolic structure is

highly non-compact, and the boundary surfaces lie at infinity, i.e. they are the

celestial surfaces in M. Following the physical idea of a Kaluza-Klein theory
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we shall study the fibre bundle M x S1 over M instead of M itself.

Another popular notion in physics is that of a conformai compactification :

M x S1 has a natural conformai compactification X without boundary
(or Xr if we want to indicate the dependence on T), i.e. there is an injective
conformai immersion M x S1 -> X onto a dense subset. To get X we spin M
around 8M, see figure 1, i.e. X is M x S1 with the circles over 5M
identified to a point. This gives a compact 4-manifold X with an S1-action.

The action is free away from the fixed point set, which is isomorphic to the

boundary 5M uj=lrNSj. The normal bundles of the Sj are trivial and of
S1-weight 1. For example take M S x R with S a surface. Then X is

the compactification ofSxRXiS1 Sx C*, that is X S x S2, where S1

acts on S2 by earth rotation and has two fixed surfaces S x {0, oo} in X.

Figure 1.

In order to relate the hyperbolic structure on M to a conformai structure
on X we proceed more formally. Recall that H3 {(x, y, t) e R3 ; t > 0}
with metric ds2 (dx2+ dy2+ dt2)/t2. It follows that:

2.2 i: H3 x S1 (R2©R2) - (R2©0) R4 — R2 S4 — S2 :

((x, y, t),S)-+ (x, y, t cos 9, t sin 9)

is an orientation preserving, conformai diffeomorphism. The map i intertwines
the ^-action on H3 x S1 with rotations in the second summand of R2 © R2.
The ^-action extends to S4 with fixed point set S2 (R2®0) u {oo} c S4.
This fixed point set corresponds to 8H3 x S1 under:
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2.3 f :H3 x S1

the continuous extension of i. To get further we shall show that the

compactification S4 of H3 x S1 is natural enough to transfer group actions
from H3 to S4. The maps i and f are equivariant with respect to the group
S1 x PSL(2, C), which will act on the right on S4 by conformai transformations.

To see this, recall that the PSL(2, C)-action on S4, which is the

quaternionic projective line HP1 H*\(H2 — {0}) (i.e. divide out the left
action of multiplication by invertible quaternions), is by fractional linear
transformations :

As a result a geometrically finite Kleinian group F acts on S4. The

limit set A' of the T-action on S4 equals i'(A x S1), so it is contained in the
S1 -fixed point set S2 a S4. Clearly A' is isomorphic to A, and we shall

simply identity A and A'. The restriction :

is proper, equivariant and surjective. This implies immediately that the

T-action on S4 — A is proper. Since F is geometrically finite the quotient
X (S4-A)/r is compact and without boundary. Finally, the fact that the

T-action is free ensures that X is smooth and inherits a smooth S1-action.

The S1-action is free away from the fixed surfaces Sj9 which correspond
as conformai surfaces to Q./F (bH3 — A)/F i'((bH3 — A)xS1)/F. It is

useful to realise that i and i' induce maps i: M x S1 -> X and i' : M x S1 -> X.
Summarizing we have proved :

Theorem 2.1. Let M be an oriented, geometrically finite, complete

hyperbolic 3-manifold with non-empty boundary 5M u Sj satisfying 2.1.

Then M x S1 has an oriented, smooth conformai compactification X
(without boundary) upon which S1 acts. X is conformally flat and the

S1-action is free away from its fixed surfaces Sj(j= 1,..., N) which correspond

as conformai surfaces to the boundary surfaces of M. The normal bundles

Nj of Sj in X are topologically trivial and of S1 -weight 1. The

hyperbolic structure on M can be reconstructed from X by giving

X — (u Sj) that metric in the conformai class for which the S1-orbits have

length 2n. Then M is the Riemannian quotient of X — (u,- Sj)

2.4

i' : (if3 —A) x S1 -> S4 - A

by S1.
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Remark. It is worth pointing out that if one chooses an equatorial

embedding of S" in Sn + 1 then any conformai transformation of Sn extends

uniquely to a conformai transformation of Sn+1 leaving invariant the

components Sn + 1
— Sn. Thus if T is a group acting on Sn then it also acts

on Sn+1. A Kleinian group can be thought of as a group acting on S3

with limit set in an equatorial S2. Theorem 2.1 now says that if T is

geometrically finite and purely loxodromic then in S4 we have A(T) c S

a S4 and 0(r)/r is a compact 4-manifold.

The existence of a conformai compactification is not automatic. It is

easy to see that R3 x S1 cannot be compactified by adding an S2 at

infinity.
The topology of X is easily described :

Proposition 2.2.

a) nfiX, m) nfiM, m) for meS1 (Sx a fixed or boundary surface).

b) There are natural isomorphisms H2(M, 5M ; Z) —> H3(X ; Z) and

H2(M ; Z) © HfiM, 8M ; Z) - H2(X ; Z)

The two summands of H2(X ; Z) (modulo torsion) are isotropic and dual to

each other under the intersection form Q on H2(X ; Z); consequently the

signature <j(X) 0, and Q n times ^
^

with n rk H2(M ; Z).

c) yfiX) hj%($j) with % denoting the Euler characteristic.

d) Spin structures on X exist and the double cover of S1 acts naturally
and effectively on any spin structure.

Proof, a) Of course this is what one expects to be true: izfM x S1, m)

nx{M, m) x Z, but the Z factor is killed by shrinking the circles to a

point. Formally, remark that a tubular neighbourhood of u Sj looks like

(u Sfi x D2, and apply the Seifert-van Kampen theorem.

b) Define j: M -> X by j(m) i'(m, 1). Up to ^-rotation j is defined

uniquely by the conformai structure of X. This induces a homomorphism
: H2(M ; Z) - H2(X ; Z). Next remark that if c is a chain in Cj (M, 5M ; Z)

then i'^cxS1) is a chain in Cj+1(X; Z), because the circle shrinking to
a point enforces 8z^(c x S1) 0. Taking a careful look at the Mayer-
Vietoris sequence applied to (u Sj) x D2 and M x S1 shows that this
gives natural isomorphisms as indicated in the proposition. The
properties of the intersection form Q follow from the intersection pairing:
H2(M ; Z) x HX{M, ÔM ; Z) -> Z.

c) This is easy, using either a and b, or equivariant Lefschetz formulas.
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d) Every orientable 3-manifold admits a spin structure, see Stiefel [35].
Give S1 the spin structure corresponding to the connected double cover,
which extends to the disc in R2; therefore a product spin structure on
M x S1 extends to X. Clearly every spin structure on X arises in this

way. The double cover of S1 is needed to define an action on the spin
structure of the orbits in X.

The spin bundle of H3 is the Spin (3) S 17(2) bundle SL(2, C) -> H3

SU(2)\SL(2, C); thus a spin structure on X is in fact nothing else but
a lift of the homomorphism r : F -> PSL{2, C) which defines M, to a homo-

morphism r' : T SL(2, C).

If N denotes the number of boundary components of M (as before)
then it follows from the exact sequence of the pair (M, 8M) that :

2.5 rk H2(X ; Z) 2 • rk HfM, 8M ; Z) ^ 2 • (N-1)

Another useful fact to keep in in mind is :

2.6 rk {ker (HfSM ; Z) HX(M ; Z))} f • rk H±{bM ; Z),

which can easily be deduced from Alexander duality and the exact sequence
of the pair (M, 5M).

VX 0 1
Examples 23. 1) If T is the cyclic group generated by 1

with
0 A

kC* then the limit set equals {0, oo} in the coordinates on SET3 supplied

by the upper half space model. It is easy to see that M H3/T D2 x S1.

To find X, it is easiest to divide out the T-action on S4 — A C2 — {0}
which is given by (z0, zx) (E2z0, | X | 2z1). As a result J is a Hopf surface

diffeomorphic to S3 x S1. The S1-action is given by (z0, zx) ^ (z0, e^zf),

so the fixed surface is the two-torus C*/ < X2k >.
2) If T is Fuchsian, i.e. T c= PSL(2, R), then H2/T is a compact Riemann

surface without boundary S of genus ^ 2 with metric ds2. The 3-manifold M
is diffeomorphic to R x S with metric given by dl2 + cosh2/ • ds2. Clearly it
follows that X must be diffeomorphic to S2 x S. A little computation
shows that X is even conformally equivalent to S2 x S. Thus X is con-

formally equivalent to the Kähler surface CP1 x S.

From the point of view of Kleinian groups, we remark that Q, is the

union of two round discs which are both invariant under T. The limit
set is a smooth circle.

3) A Kleinian group T which is not itself Fuchsian, but which contains

a Fuchsian subgroup F0 of index two is said to be an extended Fuchsian
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group. For details see Maskit [28]. The limit sets A(r0) and A(T) are equal,

and any y e T — T0 swaps the two components of Q. Such an element y
also gives rise to a fixed-point-free, orientation reversing involution a of S

(compare 2), and one deduces from this that M H3/T is a nontrivial
R-bundle over S/a. Remark that 8M S.

A standard way to get more interesting 3-manifolds is through the

Klein-Maskit combination theorems (Maskit [27], Morgan [29]). We shall

explain how the simplest of these relates to the 4-manifolds involved.
Let T0 and T1 be geometrically finite groups without cusps and Mj H3/Tj.
Every pair of points Xj e bMj has neighbourhoods Kj in Mj isometric to a

hyperbolic half space i.e. to a component of H3 — H2. The H2 5Kj — 3Mj
are embedded in Mj and SHjnMj Hjn 5Mj are circles which bound
discs in 8My. Define M M0 # M1 to be M0\K0 up Mf\Kl9 where p is

an isometry SK0 SKX. The metric structure of M M0 # M ± depends

on p, the choice of Xj and the choice of the half spaces Kj. M is called a

boundary connected sum of M0 and M1.
The first combination theorem expresses the fact that M H3/T with

F a Kleinian group which is isomorphic to the free product of T0 and
T1. In PSL(2, C) the v group T is generated by T0 and gT1g~1 for a
suitable g e PSL(2, C). It is easy to verify this.

Reverting to The 4-manifolds, we see that we are identifying, by S^-equi-
variant conformai maps, balls Bj around the points Xj in the fixed surfaces.
Thus XT equals XTo jf XFl with / now denoting a conformai connected
sum. Summarizing we get:

Proposition 2.4. If T is the Kleinian group corresponding to a boundary
connected sum of H3/T0 and H3/T1 then F is a Kleinian group such
that Xr is the S1 -equivariant conformai connected sum of XTo and XTl
at points in the fixed surfaces.

Example 2.5. A classical Schottky group T of genus g is a free product
of g cyclic groups (compare example 2.3 (1)), formed as in the gluing
construction described before proposition 2.4. The 3-manifold Mr is a handle-
body of genus g, and by proposition 2.4, XT equals the connected sum
(.S x S1)#9. In fact if F is any geometrically finite free Kleinian group without
cusps, then H3/T is a handlebody; this follows from standard results in
3-manifold topology (see Hempel [17]). We shall refer to such free groups as
Schottky groups.
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