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L'ensemble e(G;A) n'est pas vide car il contient la classe d'équivalence

de l'extension

0->A±A x G^>G-+1

donnée par le produit semi-direct.

1.8. Muni de la somme de Baer l'ensemble e(G;A) a une structure de

groupe abélien.

1.9. L'extension donnée par le produit semi-direct est scindée. Si

a: G -+ A x G est une section de n on a nécessairement cj(g) (fG(g) ; g)

où fjgg) e A. Soit a1 et a2 deux sections de n; on dit que est ^4-conjuguée
à a2 s'il existe un élément a e A tel que, pour tout g e G, on a

ai($) i(a)a2(g)i(a)~1. On notera [a] la classe de v4-conjugaison de la
section a et on désignera par h(G ; A) l'ensemble des classes de ^4-conjugaison
des sections de n.

1.10. Si u1 et a2 sont deux sections de n on définit la section <j1 + a2
en posant (ax + a2) (g) fai(g) + fG2(g) ; g). Cette opération induit sur h(G ; A)
une structure de groupe abélien.

2. Dérivations et extensions

2.1. Soit G un groupe. L'anneau de groupe ZG est muni d'une augmentation

s: ZG -» Z donnée par e(£ ngg) Y, ng. Si on considère Z avec
geG geG

sa structure de ZG-module trivial à gauche, s est un morphisme de
ZG-module et on obtient une extension de ZG-modules

o^/g-^zg-4z->o
où l'idéal d'augmentation IG est engendré, comme Z-module, par l'ensemble
{g -1 I g e G\{1}}.

2.2. Soit A un ZG-bimodule.

Une dérivation de G dans A est une application -» telle que, pour
tout g, he G, on ait f{gh) f(g) h+ g• f

L'ensemble des dérivations de G dans A forme un groupe abélien noté
Der (G ; A).

Pour tout a e A, l'application fa: G -> Adéfinie par fjg) g-a - a-g
est une dérivation, appelée dérivation intérieure de G dans A.
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L'ensemble des dérivations intérieures de G dans A forme un sous-groupe
de Der (G ; A) noté Int (G ; A).

2.3. On suppose dorénavant que le groupe G agit à gauche sur le groupe
abélien A.

On considère alors A comme un ZG-bimodule en faisant agir G

trivialement à droite sur A. Une dérivation de G dans A est donc une

application / : G -> A qui satisfait la condition /(<gh) g • f(h) + /(g). On

en déduit que /(1) 0.

De plus, pour tout a e A, la dérivation intérieure fa: G -> A est définie

par fa(g) g • a - a.

2.4. Lemme. Le groupe Der (G ; A) est isomorphe au sous-groupe de

Homz(ZG ; A) formé des morphismes de groupes abéliens f : ZG - A qui
satisfont la condition f(xyj f{x)e(y) + x* f(y) pour tous x, y e ZG.

Démonstration. Si f e Der (G ; A) et x £ ngg e ZG on définit
_ _ geG _/ : ZG -> ^4 en posant /(x) £ ngf(d)- Inversément si / e Homz(ZG ; 4)

geG

satisfait la condition de l'énoncé et si j : G ^ ZG est l'inclusion évidente, on
définit une dérivation / en posant / f °j •

2.5. Proposition. Il existe un isomorphisme de groupes abéliens

co : Der (G ; A) -> HomZG(/G ; v4).

Si / g Der (G ; A) on u ©(/) (g — 1) f{g) pour tout geG.

Démonstration. Soit / g Der (G ; v4); posons G)(/) / o i où i: IG -» ZG
est l'inclusion. Si x g ZG et y e IG on a, d'après le lemme 2.4,

®(/) (xy) /(xy) /(x)e(y) + X • /(y) x • co(/) (y) ;

donc co(/) est un morphisme de ZG-modules. De plus, pour tout geG,
on a <»(/) If/ • 1 /(ôf-1) /(?) - /(l) f(g)•

Définissons maintenant une application

co' : HomZG(/G ; A) Der (G ; A)

Si ue Homzg(/G ; 4) et g e G posons co'(u) {g) u(g— 1). Pour tout g, he G

on a

co '{u)(gh) u(g(h—l) + (g—l)) gfu(/i-l) + %-l)
g • co'(u) (/z) + ©'(m) te).
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Donc ©'(m) est une dérivation de G dans ri. On vérifie immédiatement que

COCO — lDer(G;T) ^ qUC COCO •

2.6. On rappelle que h(G;A) désigne le groupe abélien des classes de

ri-conjugaison des sections de l'extension de groupes donnée par le produit
semi-direct ri x G.

Proposition. Il existe un isomorphisme de groupes abéliens

Der (G ; ri)
F:h(G;A) Int (G ; ri)

Démonstration. Il résulte de 1.9 qu'à toute section a : G A x G on

peut associer une application fa : G -> ri telle que, pour tout g e G, on a

a(g) (fa(g);g). Compte tenu de la loi de multiplication du produit semi-

direct et du fait que a est un morphisme de groupes, on vérifie que
/a e Der (G ; ri).

Si g' est une section ri-conjuguée à a, il existe un élément ae A tel que
&{g) i(a)cr(g)i(a)~1 ; on en déduit que {a + fM~9 -a', g) donc

que f„ - f& e Int (G ; A).
On définit alors l'application F en posant L([cr]) [/CT], où [/J désigne

1 1 j r j 1 •
Der (G; ri)

la classe de ja dans le groupe quotient Int (G ; ri)
Il est immédiat de vérifier que F est un morphisme de groupes et que F

est bijective.

3. Le groupe H1(G;A)

3.1. Soit G un groupe. Comme d'habitude on munit Z de sa structure de
ZG-module à gauche trivial. De plus soit ri un ZG-module à gauche; on
considère ri comme un ZG-bimodule en faisant agir G trivialement sur la
droite de ri.

On se propose de démontrer l'existence d'un isomorphisme de groupes
abéliens

^ Der (G ; ri)

Compte tenu de la définition des groupes H*(G ; A) et de la proposition 2.6,
on obtient alors le résultat classique suivant.
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