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L’ensemble ¢(G ; A) n’est pas vide car il contient la classe d’équivalence
de I'extension

0-A4A5A4xG5G—1
donnée par le produit semi-direct.

1.8. Muni de la somme de Baer I'ensemble ¢(G;A) a une structure de
groupe abélien.

1.9. L’extension donnée par le produit semi-direct est scindée. Si
6:G — A x G est une section de ™ on a nécessairement o(g) = (f,(9);9)
ou f.(g)e A. Soit o, et o, deux sections de 7; on dit que o, est A-conjuguée
a o, sil existe un ¢élément ae A tel que, pour tout ge G, on a
c,(9) = (a)o,(g)(a)”t. On notera [c] la classe de A-conjugaison de la
section o et on désignera par h(G ; A) 'enserible des classes de 4-conjugaison
des sections de .

1.10. Si o, et o, sont deux sections de m on définit la section o, + o,
en posant (o, +6,) (9) = (f5,(9)+ £,,(9); g)- Cette opération induit sur h(G ; A)
une structure de groupe abélien.

2. DERIVATIONS ET EYTENSIONS

2.1. Soit G un groupe. L’anneau de groupe ZG est muni d’une augmen-

tation ¢: ZG — Z donnée par () n,g) = Y n,. Si on considére Z avec
geG geG

sa structure de ZG-module trivial & gauche, & est un morphisme de
ZG-module et on obtient une extension de Z.G-modules

051652657 -0

ou Iidéal d’augmentation IG est engendré, comme Z-module, par ’ensemble
lg —11geG\{1}}.
2.2. Soit A un ZG-bimodule.

Une dérivation de G dans A4 est une application f:G — A telle que, pour
tout g, h e G, on ait f(gh) = f(g)-h + g- f(h).

L’ensemble des dérivations de G dans A forme un groupe abélien noté

- Der (G; A).

Pour tout a € 4, 'application f,: G - A définie par f,(9) =g:-a—a-g
est une derivation, appelée dérivation intérieure de G dans A.
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L’ensemble des dérivations intérieures de G dans 4 forme un sous-groupe
de Der (G ; A) noté Int (G ; A).

2.3. On suppose dorénavant que le groupe G agit a gauche sur le groupe
abélien A.

On considere alors A comme un ZG-bimodule en faisant agir G tri-
vialement a droite sur A. Une dérivation de G dans A est donc une
application f:G — A qui satisfait la condition f(gh) = g- f(h) + f(g). On
en déduit que f(1) = 0.

De plus, pour tout a e A4, la dérivation intérieure f,: G — A est définie
par f,(9) = g-a — a

24, LEMME. Le groupe Der(G;A) est isomorphe au sous-groupe de
Hom,(ZG ; A) formé des morphismes de groupes abéliens f:2.G — A qui
satisfont la condition f(xy) = f(x)e(y) + x+ f(y) pour tous x,yeZG.

Démonstration. Si  feDer(G;A4) et x = Y ngeZG on définit

geG

f:ZG - A en posant f(x) = Y n,f(g). Inversément si f e Hom,(ZG ; A)

geG
satisfait la condition de I’énoncé et si j: G — ZG est I'inclusion évidente, on

définit une dérivation f en posant f = f oj.

2.5. PROPOSITION. Il existe un isomorphisme de groupes abéliens
®: Der (G; A) > Hom,,(IG; A) .
Si feDer(G;A4) ona o(f)(g—1) = f(g) pour tout geG.

Démonstration. Soit f € Der (G; A); posons o(f) = feioui:IG - ZG
est I'inclusion. Si x € ZG et y € IG on a, d’apres le lemme 2.4,

o(f) (xy) = fxy) = fXEQ) + x- f() = x-o(f) ()3

donc o(f) est un morphisme de ZG-modules. De plus, pour tout ge G,

ona (f)(g—1) = flg—1) = flg — 1) = f(g).

Définissons maintenant une application
o : Hom,4(IG; A) — Der (G; A4) .

Si ue Hom,,(IG; A) et g € G posons o'(u) (g) = u(g—1). Pour tout g, he G
on a

@) (gh) = ulgth—1)+(g—1)) = g-uh—1) + ug—1)

= g-o'Wh) + o' (9).

I
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Donc @'(u) est une dérivation de G dans A. On vérifie immediatement que

(DI(D == 1Der(G;A) et que (D(D/ = 1H0mZG(1G;A) o

2.6. On rappelle que h(G;A) désigne le groupe abélien des classes de
A-conjugaison des sections de I'extension de groupes donnée par le produit
semi-direct 4 x G.

PROPOSITION. I] existe un isomorphisme de groupes abéliens

Der (G; A)

F:hG;A e
G4 =~ 146G 4)

Démonstration. 1l résulte de 1.9 qu’a toute section ¢: G - A x G on
peut associer une application f;: G — A telle que, pour tout ge G, on a
o(g9) = (f(9); g). Compte tenu de la loi de multiplication du produit semi-
direct et du fait que o est un morphisme de groupes, on vérifie que
f. e Der (G; A).

Si ¢’ est une section A-conjuguée a o, il existe un élément a € A tel que
co'(g9) = Wa)o(g)ua)~'; on en déduit que (f,(9);9) = (a+ fo(9)—g - a;g) donc
que f, — fo €lInt(G; A).

On définit alors application F en posant F([c]) = [f,], ou [f,] désigne
Der (G; A)

Int (G; A)

Il est immédiat de vérifier que F est un morphisme de groupes et que F

est bijective.

la classe de f, dans le groupe quotient

3. LE GROUPE HY(G; A)

3.1. Soit G un groupe. Comme d’habitude on munit Z de sa structure de
ZG-module 4 gauche trivial. De plus soit 4 un ZG-module a gauche; on
considere A comme un ZG-bimodule en faisant agir G trivialement sur la
droite de A.

On se propose de démontrer I'existence d’un isomorphisme de groupes
abéliens

Der (G; A
0. Der (G 4)

A 1 7.
‘Tt G A) — Bxtz4(Z; A).

Compte tenu de la définition des groupes H*(G ; A) et de la proposition 2.6,
on obtient alors le résultat classique suivant.
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