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10 C. RIEHM

satisfied. Let the the residue class field of K(ej have 2k elements. Set

n (2k)2h — 1. Then n \ n\ n' is odd, and K(sn,)/K(zn) is unramified of
degree 2h. Consider the conditions (i)-(v) with n' instead of n. Then (i) is

unchanged, (ii) holds because n \ n', (iii) holds trivially and (v) holds vacuously
because 2h \ (K(snf: K). Finally K(en>) n K(e4) K since one is ramified and

the other is not, so the non-trivial automorphism of K(e4n)/K(en) is the
restriction of that of K(z4nl)/K{zn,\ so (iv) holds also for n'.

We can deduce from this abbreviated form of Janusz' theorem that it is

equivalent to Yamada's. Suppose that Janusz' conditions are satisfied, and

consider the extension Q2(e2h + i,e„)/K. The inertia subgroup of its Galois

group is f ^(Q2(e2h + i, s«)/^(sn))5 a group of order 4. Suppose that p is an

extension of the non-trivial automorphism of Q2(e2h, to Q2(82* + l 8J>

so p Gy. By condition (iv), there is an integer a — 1 (mod 2h) such that
p(s2h + i) s2h + i. It follows that p2 is the identity. Thus ^ is non-cyclic.
Conversely suppose that there is an extension Q2{Q/K whose inertia subgroup

g, is non-cyclic. As we saw in 1., this means that a_1 is in the Galois

group of Q!/K and so its restriction (which we also call a_x) is in

0(Q2(e2H, ec)/K) and is non-trivial. Its fixed field contains K(sc); by Lemma 3.3

of [J], K(sc,84) Q2(82^5£c) and so the fixed field is exactly K(8C). Thus

both (iv) and (ii) are also fulfilled, (i) holds by Lemma 1.

4. F. Lorenz, [L], p• 463. His condition for non-triviality of S(K) is that
— 1 is a norm in the extension K/Q2. The norm residue symbol in the

extension Q2/Q2 sends —1 to a_x e ^(Q2/Q2). Thus it follows from [S],
pp. 204-205, that —1 is a norm in K/Q2 iff a_1 e ^(Q 2/K).
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