Zeitschrift: L'Enseignement Mathématique
Herausgeber: Commission Internationale de I'Enseignement Mathématique

Band: 34 (1988)

Heft: 1-2: L'ENSEIGNEMENT MATHEMATIQUE

Artikel: EULER'S FAMOUS PRIME GENERATING POLYNOMIAL AND THE
CLASS NUMBER OF IMAGINARY QUADRATIC FIELDS

Autor: Ribenboim, Paulo

Kapitel: F) The class number

DOI: https://doi.org/10.5169/seals-56587

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 28.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-56587
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en
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F) THE CLASS NUMBER

The theory of quadratic number fields originated with the study of
binary quadratic forms aX? + bXY + cY? (where a, b, ¢ are integers and
ac#0). The discriminant of the form is, by definition, D = b* — 4ac. Note

D :
that D = 0 or 1 (mod 4); let d = 1 or d = D, respectively.

An integer m is said to be represented by the form if there exist
integers x, y such that m = ax® + bxy + ¢y

If a form ¢ X'? + PX'Y' + c'Y'? is obtained from the above form by a
linear change of variables

X = hX' + kY’
Y = mX' + nY’

where h, k, m, n are integers and the determinant is hn — km = 1, then the
two forms represent the same integers. In this sense, it is reasonable to
consider such forms as being equivalent. Clearly, equivalent forms have the
same discriminant.

In “Disquisitiones Arithmeticae” Gauss classified the binary quadratic
forms with a given discriminant D. Gauss defined an operation of composition
between equivalence classes of forms of a given discriminant. The classes
constitute a group under this operation. Gauss showed that, for any given
discriminant D, there exist only finitely many equivalence classes of binary
quadratic forms.

The theory was later reinterpreted, associating to each form aX? + bXY

+ ¢Y? of discriminant D, the ideal I of Q(\/E) = Q(\/IS) generated by a and

~b+./D
2

exists a non-zero element o € Q(\/c}) such that I = Ao.I'. Then, equivalent
binary quadratic forms correspond to equivalent ideals, and the composition
of classes of forms corresponds to the multiplication of equivalence classes of
ideals. Thus, Q(ﬁ) has finitely many classes of ideals. Denote by h = h(d)
- the number of classes of ideals, or class number of the field Q(\/;l).

The class number h(d) = 1 exactly when every ideal of Q(\/E) 1s a principal
“1deal.

Gauss conjectured that for every h > 1 there exist only finitely many

imaginary quadratic fields Q(ﬂ) (with d <0) such that the class number is
+equal to h. Soon, I shall say more about this conjecture.

. Define two non-zero ideals I, I’ to be equivalent when there
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I shall now indicate how to calculate the class number of the quadratic
field Q(\/B). Define the real number 6 as follows:

1./D if D>O0,

2 )
—/—D if D<Q0.
T

9:

A non-zero ideal I of A is said to be normalized if N(I) < [0] (the
largest integer less than or equal to 0). The ideal I is said to be primitive
if there does not exist any prime number p such that Ap divides I.

Let A" denote the set of normalized primitive ideals of A.

If Te A", if p is a ramified prime then p? ) N(I), and if p is an inert
prime, then p A N(I). So,

NO= [ rx [I p@.

r ramified p decomposed

It may be shown that every class of ideals contains a primitive normalized
ideal. Since for every m > 1 there exist at most finitely many ideals I
of A such that N(I) = m, this implies, once more, that the number of
classes of ideals is finite.

Note that if A4~ consists only of the unit ideal 4 = A.1, then h = 1.
Thus, if every prime p such that p < [0] is inert, then h = 1. Indeed,
if I e & then N(I) = 1, so I is the unit ideal, hence h = 1.

Denote by N(A”) the set of integers N(I), where [ € A"

In order to decide if the ideals I,J e A" are equivalent, it will be
necessary to decide which integers m € N(A") are of the form m = N(Aw).

Let m > 1, let

u + v/d when d=2or3(mod4), with u,veZ,

d
y—iz—v\—/: when d = 1 (mod 4), with u,veZ,u = v(mod 2).

Then: Aax is a primitive ideal with N(Aa) = m if and only if
m = |u*>— dv?*|, ged(u,v) = 1 if d=2or3(mod4)

2_d2 _
mzl—u—z—lﬂ—'—, gcd(uzv, v) =1 if d=1(mod4

(this is called the primitive representation of m).
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Proof. Let d=2 or 3 (mod 4), m = N(do) = |u?> — dv*|, also
ged (u, v) = 1, because Aa is primitive.

2 7.2 —_
I—-Lf—46-l—v——|, also if p divides !

Let d = 1 (mod 4), m = N(4o) =

u—uv 1+./d ,
and p divides v then p divides o = 5 + v( 2f>, against the

hypothesis.
Conversely, let d = 2 or 3 (mod 4), so N(Ao) = m: if p divides Aa,

since {1, \/2} is an integral basis then p | u, p | v, which is absurd.
Let d = 1 (mod 4), so N(Aa) = m; if p divides Aa, since

o = £l + v(l—i—z\/g) and {l,i—%—fi}

2

Y and v, which is absurd. ]

is integral basis, then p divides

Calculation of the class number.

Letd > 0,50 0 = 3./D.

[0] =

Since 1 <41./D < 2 then 4 < D < 16, with D = 0 or 1 (mod 4), hence
De{4,5,8,9,12, 13}, and therefore d € {5, 2, 3, 13}.

Now N(A") = {1}, hence A4 consists only of the unit ideal, and therefore
h = 1.

[6] =

Since 2 < 3./D < 3 then 16 < D < 36, with D = 0 or 1 (mod 4), hence
D e {16, 17, 20, 21, 24, 25, 28, 29, 32, 33} and therefore d € {17, 21, 6, 7, 29, 33}.
~ Now N(¥) = {1,2).

Take, for example d = 17. Since 17 =1 (mod 8) then 42 = P.P,

) 32 17 x 12 317
- N(P)=NFP)=22= | 1 l, gcd( > 17) = 1, hence

P = Aa , azg_fz_@,
oo, w2

2

¢ Therefore the class number is h = 1.
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Let d = 21. Since 21 = 5 (mod 8) then A2 is a prime ideal, 2 is inert,
hence h = 1.
Let d = 6, then 2 divides 24 = D, so 2 is ramified, 42 = P? and

2=122—6x 12|, ged(2,1) = 1, hence P = Ao, with o = 2 + /6.
Therefore h = 1.

[6] = 3.

Since 3 < 1. /D < 4 then 36 < D < 64, with D = 0 or 1 (mod 4), hence
D € {36, 37, 40, 41, 44, 45, 48, 49, 52, 53, 56, 57, 60, 61}
and therefore
de {37, 10, 41, 11, 53, 14, 57, 15, 61} .

Now N(A7) = {1, 2, 3}.
Take, for example d = 10. Since 2 divides 40 = D then 2 is ramified,

10 1
A2 = R?. Since (—3—) = <§> = 1 then 3 is decomposed, A3 = P.P'. The
ideals R, P, P' are primitive.
2 has no primitive representation: if 2 = |u? — 10v? | then u* = 1002
+ 2 = + 2 (mod 10), which is impossible.
3 has no primitive representation: if 3 = |u? — 10v? | then u?> = 10v?

+ 3 = 4+ 3 (mod 10), which is impossible.
Thus, R, P, P’ are not principal ideals. The ideals RP, RP’ are primitive. Also

—2x3 = —6=22-10x1%, ged(2,1) = 1, 2x3 = N(RP) = N(RP),

hence RP, RP’ are principal ideals. In conclusion, h = 2.

2
Letd < 0,500 = —./—D.

T

[0] = 1.
2

2
Sincel<—4/—D<2then%<|D|<n2,and|D|500r3(mod4),
I

hence | D | € {3,4, 7,8}, therefore de {—3, —1, —7, —2}. Now N(A) = 1,
hence A" consists only of the unit ideal, so h = 1.

[0] = 2.

2 9
Since2 < —./—D < 3thenn* < |D| <Zn2,andlD| = 0 or 3 (mod 4),
T

hence | D | € {11, 12, 15, 16, 19, 20}, therefore d € {—11, —15, —19, —5}.
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Take, for example, d = — 11. Since — 11 = 5 (mod 8) then 2 is inert,
and therefore h = 1.

Let d = — 5. Since 2 divides D = — 20 so 2 is ramified, 42 = P2

7 has no primitive representation: if 2 = |u? + 5v?| then u®> = — 5v°

+ 2 = 2 (mod 5), which is impossible. Also — 5 = 3 (mod 4). So P is not
principal and h = 2.
Let d = — 15. Since — 15 = 1 (mod 8) then 42 = P. P

2 has no primitive representation : if

2+ 1502 u—v
2:'” +4 0 I, with gcd( 3 ,v>:1,

then u? + 1502 = 8, so u?* =3 (mod 5), which is impossible. Also
— 15 = 1 (mod 4). Since P, P" are not principal ideals, then h = 2.
Letd = — 19. Since — 19 = 5 (mod 8) so 2 is inert, hence h = 1.

[6] = 3.

2 9
Since3 < =./—D < 4then% <|D| < 4n%and|D| = 0or 3 (mod 4),
T

hence
| D | € {23, 24, 27, 28, 31, 32, 35, 36, 39},
and therefore

de{—23, —6, —31, —35, —39}.

Take d = — 31. Since — 31 =1 (mod 8) then A2 = P.P. Since

B0 (DY L o 43 4 orime ideal
3 = 3 3 = — 1, 80 1sapr1melea..

2 has no primitive representation: if

2 312 .
_ I +4 L ith gcd<“2",u):1-,

then 8 = u® + 31v? which is impossible. Since — 31 = 1 (mod 4) then P, P’
are not principal ideals. If P, P’ are equivalent then P = P'.Aa so
P* = P.P'. Ao = AQ2x), so 4 = N(P?) = 4N(Av), hence N(Ao) = 1, thus
Ao = A, and P = P, which is absurd. In conclusion, h = 3.

These examples are enough to illustrate how to compute the class number,
at least for small values of the discriminant.

2
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Determination of all quadratic fields with class number 1.
Letd > 0.

It is conjectured that there exist infinitely many d > O such that Q(\/g)
has class number 1. This question is difficult to settle, but it is expected
that the conjecture is true.

For example, there exist 142 fields Q(\/c—l), with 2 < d < 500 having class
number 1.

Letd < 0.
It was seen that if .4/ consists only of the unit ideal, then h = 1.

But conversely:
Ifd <Oand h = 1 then & = {A4}.

Proof. If |D| <7, it is true. Let |D| > 7, let Ie A/, I # A, so there
exists a prime ideal P dividing I. Then N(P) = p or p?, where p is a prime
number. If N(P) = p? then p is inert and Ap = P divides I, so I would
not be primitive, which is a contradiction. If N(P) = p, since P divides [

then p < N(I) < [0] < —./|D|. If p has a primitive representation:

D
if d = 2 or 3 (mod 4) then d = 20 %0P = u?> — dv?, hence v # 0, therefore

D 64
ID| =z p=>=|d]| = %,507 > — = | D |, which is absurd;
T
, u? — dv?
if d =1 (mod 4) then d = D, so p = — hence v # 0, therefore
2 d D
—JID| =Zp = I——I = u , and again 7 > D, which is absurd.
T 4 4
Therefore P is not a principal ideal and h # 1, which is against the
hypothesis. ]

Gauss developed a theory of genera and proved:
If d <0 and if ¢t is the number of distinct prime factors of D, then

2~ divides the class number of Q(,/d).

Hence if h =1 then D = — 4, — 8 or — p, where p is a prime,
p = 3 (mod 4), henced = — 1, — 2 or — p.

From this discussion, it follows:
IfD=—3—4 —7 —8thenh = 1.
If D# —3, —4, —7, —8 and D= —p, p=3 (mod 4) then h = 1

if and only if # = {A} and this is equivalent to the following conditions:
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. —P
2 is inert in Q(./ —p), and if g is any odd prime, g < [6], then (—;;) = — 1,
ie., g is inert in Q(\/ —p)-

This criterion is used in the determination of all D <0, [D] < 200,
such that h = 1.

[6] = 1. This gives the discriminants D = — 3, —4, — 7, — 8.
[6] = 2. Now —20<D< — 1], with D = —p, p=3 (mod 4), so
D = — 11 or — 19.
Since — 11 = 5 (mod 8) then 2 is inert, so if D = — 11 then h = 1.
Similarly, since — 19 =5 (mod 8) then 2 is inert, so if D= —19
then h = 1.
[6] = 3. Now —39<D< —23, with D= —p, p =3 (mod 4), so
D = — 23 or — 31. But — 23 % 5 (mod 8), — 31 # 5 (mod 8), so the class
numbers of Q(./ —23) and of Q(,/ —31) are not 1. .
[0] =4 Now—59<D< —40,D = —p,p=3(modd),soD = — 43,
— 47, — 59. Since — 43 = 5 (mod 8) and (-‘-?) — — 1 then Q(/—43)

. —59 :
has class number 1. Since — 47 # 5 (mod 8) and — ) = 1 then 3 1s not

inert. So the class numbers of Q(,/ —47) and of Q(,/ —59) are not equal to 1.

The same calculations yield:
[6] = 5: D = — 67, with class number 1

[6] = 6: no discriminant
[6] = 7: no discriminant
[6] = 8: D = — 163, with class number 1.

This process may continued beyond 200, but leads to no other discri-
minant for which the class number is 1. Of course, this does not allow
to decide whether there exists any other such discriminant, nor to decide
whether there are only finitely many imaginary quadratic fields with class
number 1.

In a classical paper, Heilbronn and Linfoot showed in 1934, with
analytical methods, that besides the above examples there exists at most

another value of d < 0 for which Q(\/E) has class number 1. Lehmer
showed that if such a discriminant d exists at all, then |d| > 5 x 10°.
In 1952, Heegner proved that no other such d could exist, but his proof
contained some steps which were unclear, perhaps even a gap. Baker reached
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the same conclusion in 1966, with his method involving effective lower bounds
on linear forms of three logarithms; this is also reported in his article of
1971. At about the same time, unaware of Heegner’s result, but with
similar ideas, concerning elliptic modular functions, Stark proved that no
further possible value for d exists. -So were determined all the imaginary
quadratic fields with class number 1. It was somewhat an anticlimax when
in 1968 Deuring was able to straighten out Heegner’s proof. The technical
details involved in these proofs are far beyond the scope of the present
article.

This i1s the place to say that Gauss’ conjecture was also solved in the
affirmative. Thanks to the work of Hecke, Deuring, Mordell and Heilbronn,
it was established that if d < 0 and | d | tends to infinity, then so does the

class number of Q(ﬁ). Hence, for every integer h > 1 there exists only

finitely many fields Q(\/E) with d < 0, having class number h.

The determination of all imaginary quadratic fields with class number 2
was achieved by Baker, Stark, Weinberger.

An explicit estimate of the number of imaginary quadratic fields with
a given class number was obtained by the efforts of Siegel, Goldfeld,
Gross & Zagier. For this matter, I suggest reading the paper of Goldfeld
(1985).

G) THE MAIN THEOREM

THEOREM. Let g be a prime, let f(X) = X*> + X + q. The following
conditions are equivalent :
1) g =235 11,17, 41.
2) fn) isaprimefor n=20,12,.,q9— 2

3) Q(/1—4q) has class number 1.

Proof. The implication 1 — 2 is a simple verification.

- The equivalence of the assertions 2 and 3 was first shown by Rabi-
novitch in 1912. In 1936, Lehmer proved once more that 2 — 3, while
3 — 2 was proved again by Szekeres (1974) and by Ayoub & Chowla (1981),
who gave the simplest proof. The proof of 3 — 1 follows from the complete
determination of all imaginary quadratic fields with class number 1. Since
this implication requires deep results, I shall also give the proof of 3 — 2.

2—-3 let d=1—-—4g<0, so d=1 (mod 4). If g =2 or 3 then
d= —"7o0r — 11 and Q(\/E) has class number 1, as it was already seen.
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