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QUILLEN’S THEOREM ON BUILDINGS AND THE LOOPS
ON A SYMMETRIC SPACE

by Stephen A. MITCHELL ')

ABSTRACT

In the mid 70’s Garland and Raghunathan, and (independently) Quillen
discovered that QG (G a compact Lie group) is homotopy equivalent to
an infinite dimensional flag variety, and that Bott’s cell decomposition
of QG can then be obtained as a Bruhat or Schubert cell decomposition.
Quillen’s method applies also to the loops on a compact symmetric space M,
and involves identifying the path space of M with a certain Bruhat—Tits
building. The details never appeared. In this paper we develop a theory of
“topological” buildings and prove Quillen’s theorem. We then show how
one can rederive the Bott—Samelson theorems on QM, and the real and
complex Bott periodicity theorems, from this point of view.

In the 1950°s Bott, and Bott and Samelson, obtained a series of beautiful
results on the topology of loop spaces of compact symmetric spaces: the
Bott periodicity theorems [6], a cell structure (with various applications to
homology) [4] [7], and a description of the Pontrjagin ring [5]. All of
these theorems were proved using Morse theory. In the mid 70’s another
very different approach emerged in the work of Garland and Raghunathan
[12] (who only consider the case of a compact Lie group) and (inde-
pendently) Quillen [30]. The new point of view forms a part of the theory
of loop groups: if G is a simply-connected compact Lie group, with
complexification G, the group LG of maps S' — G can be regarded as
an infinite dimensional complex algebraic group. The based loops QG then
appear as a homogeneous space of LG, analogous to a flag variety. If
M = G/K is a symmetric space, QM is a real form of QG. The cell
structures of Bott and Samelson are obtained from a Bruhat decomposition
of LG¢, and their results can be derived from the combinatorics of the
affine Weyl group. In addition, QM is the direct limit of finite dimensional
“Schubert varieties”, and recently this point of view has led to some new

1) Partially supported by a grant from the National Science Foundation.
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results on the homotopy type of QSU(n), QSU(n)/O(n), and QSU(2n)/Sp(n)
(191, [24], [26]).

There are two key ingredients. The first concerns the structure of the
group of “algebraic loops” L, ,Gc—ie., the regular maps C* — G¢ (§ 3).
Here the basic idea goes back to Iwahori and Matsumoto [16], following a
suggestion of Bruhat. These authors show how to associate a Tits system
(§ 2) to any Chevalley group over a local field, so that the Weyl group
of the system is the affine Weyl group. Now if we write 5C for the group
of points of the algebraic group G over C[z,z7 '], it is easy to see that
L,,Ge = GC. Hence the results of [16] can be applied (at least after
completing with respect to the ideal (z)) and we obtain a Tits system on
L,,Gc. The group P of regular maps C — G¢ is then a maximal parabolic
subgroup, and the homogeneous space @C/P (which is a direct limit of projective
varieties) can be identified with Q,,,G = {f € L,,G¢: f(S') < Gand f(1) = 1}
(“Iwasawa decomposition”). The axioms for a Tits system then yield a Bruhat
or Schubert cell decomposition of GC/P, and hence a cell decomposition of
Q,,G. The cells are indexed by Hom (S, T), where T is a maximal torus.
After some further technical work, this idea can be generalized to QM : if
M = G/K, where K = G° for some anti-complex involution o on G
preserving G, we can define an involution t an L,,G¢ by tf(z) = off(2)).
The fixed group is a real form of GC. Similarly, we replace Q,,G by
(Q,,,G)"—the space of Z/2—equivariant loops—and the cell decomposition
of (€,,G)" is obtained in an analogous way (§ 5). Of course to apply any of
this to the original problem, we need the second ingredient: Let €, M
= (Q,,G)’, and note that QM can be identified with (QG)".

THEOREM (Quillen).  The inclusion Q,,M — QM is a homotopy equivalence.

In the case M = G this theorem has several completely different proofs
([12], [29], [30]); it can also be deduced from Bott’s work and the
Bruhat decomposition [25]. The proof suggested by Quillen is particularly
beautiful, and applies to all compact symmetric spaces M. The idea is the
following, taking M = G for simplicity: It is sufficient to produce a con-
tractible space E on which Q, G acts freely, with orbit space G. Quillen
observes that a plausible candidate for E is already at hand. To any
Tits system one can associate a certain simplicial complex (or space)
#B—the building—and when the Weyl group of the system is infinite, as
it is here, the building is contractible. In fact # 1s a certain quotient
space of L,,G/T x A, where A is a simplex of dimension equal to rank
G. It follows that the Q,,G orbit space is a quotient of G/T x A. But it
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is a classical fact that G = G/T x A/~ (§1), and on inspection one sees
that the two quotients are identical. In fact (this is also due to Quillen)
% has a very concrete description: it is the space of paths in G of the form
f(e*™) exp tX, where f € Q,,G and X € g. The action of Q,,G on this space
is obviously free, which completes the proof (§ 4).

The purpose of this paper is to give a detailed exposition of Quillen’s
idea, with reasonably complete proofs, and to show how one can derive
the results of Bott and Samelson. (Along the way, we also give an axiomatic
treatment of topological Tits systems.) The paper is organized as follows:

In § 1 we establish most of our notation concerning Lie groups, symmetric
spaces, etc.; and collect some preliminary results. The most important point
here is the classical description of M as a quotient of K x A, where A
is the Cartan simplex. The reader will probably prefer to skim through
this section first, and refer back to it later when necessary. The main
references are [13], [22], and [33]; a short introduction to real forms,
Satake diagrams, etc. can be found in [23].

In § 2 we discuss topological Tits systems (G, B, N, S) and their associated
buildings. Although the axioms for a Tits system may seem obscure at first
encounter, and lack the geometric appeal of Morse theory, it can not be
denied that they are remarkably simple. The structure theory of such systems
constitutes our main technical tool. However, in our context it is necessary
to take into account the topology the system. We define topological Tits
systems in a rather minimal way, and then state four additional axioms
that will be satisfied by all the Tits systems considered in this paper.
These axioms are fairly easy to verify in most cases, and suffice to establish
various desirable properties: For example, that the Bruhat decomposition of
a “flag space” G/P is a CW-decomposition, with the closure relations on the
cells given by the Bruhat order on the Weyl group. Much of the treatment
here is inspired by Steinberg ([32]) and Kac and Peterson ([17], [18], [19]).
We then introduce the topological building B,;. It is a quotient space of
G/B x A—in fact, it is precisely the homotopy colimit of the diagram of

flag spaces G/P,(I<S). We show how to adopt the standard proofs of the
:F

Solomon-Tits theorem to the topological context. Thus B, is contractible
if W is infinite and is a certain suspended quotient of G/B otherwise.
As an example, we note that for the usual Tits system associated with
a real form of a semisimple complex Lie group, the building can be identified
with the “tangent cut locus” of the associated compact symmetric space.

In §3 we briefly review some basic facts about algebraic loop groups.
(See for example [1], [27] and [29] for details). The most important fact
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is that LG admits a suitable topological Tits system. The existence of the
Tits system is proved more generally for Kac-Moody groups by Kac and
Peterson [17], so we only sketch the proof.

In §4 we prove Quillen’s theorem on the building, in the case M = G.
(We have separated this case from the general case in order to isolate the
main idea, which is fairly simple.)

In §5 we redo the results of §3, 4 for a general M. Again, many of
the more tedious technical results are only sketched. One key result is the
existence of a suitable Bruhat decomposition of the real form (L,,G¢)"
Presumably this follows from the general theory of algebraic groups, but we
have elected to give a direct proof that contains a result of some inde-
pendent interest. The point is that the involution t does not preserve the
Iwahori subgroup B (the “B” of the Tits system), so one can not simply
apply T to the B — B double cosets in GC. However © does preserve a
certain parabolic Q (canonically associated to the original involution o©),
and hence preserves the Q~ — Q~ double cosets. To analyze these, we show
more generally that for any flag variety G¢/Q or GC/Q, the P-orbits (here
P,Q are any parabolics) are holomorphic vector bundles over (finite
dimensional) flag varieties of the Levi factor of P (which can be explicitly
determined). This fact is certainly well known, but does not seem to appear
in the literature. The details are banished to an appendix (§ 8). We also show
in this section how to deduce various results from [7]: the cell structure on
QM, the fact that these cells are all cycles mod 2 (or actual cycles, if M
is of “splitting rank”), and the “somewhat mysterious” connection [7]
between H, QG and H, QM, when M 1s of maximal rank. (This connection
becomes transparent in the present context.)

In § 6, we discuss six examples: SU(2n)/Sp(n), SU(n)/SO(n), SO(2n)/U(n),
Sp(n)/U(n), S" and CP". Here, as elsewhere, we emphasize the way in which
information can be obtained directly from the Satake and Dynkin diagrams.

In § 7, we reprove the real and complex periodicity theorems. In effect,
we simply imitate Bott’s original, beautiful proof, but with Morse theory
replaced by topological Tits systems. The idea is that for certain commutator
maps K/H 5 QG/K, o(K/H) is a “Schubert subvariety”, so the range of
dimensions in which ¢ is an equivalence can be determined by merely
counting cells. But as an added twist, we show that if one only considers
the maps ¢ associated with the “miniscule roots” of M (these suffice for
Bott periodicity), then this range of dimensions is not only determined by
the root system (as Bott showed), but in fact can be read off directly,
in a rather amusing way, from the Dynkin diagram. Thus the Bott
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periodicity theorems can be proved by inspecting the Dynkin diagrams of
the classical symmetric spaces !

A traditional difficulty encountered by writers on this subject is the
inordinate quantity of notation required: to the usual list of notations for
root systems, Coxeter groups, complex Lie groups, etc., we must add still
more notation for symmetric spaces, restricted root systems, loop groups, etc.
Some further remarks: (1) we generally use a tilda for various “loop”
analogues of classical objects, but this notation should be interpreted
with care. For example, it G is a reductive complex algebraic group,
GC is the group of algebraic Gc-valued loops; on the other hand, if B
is a Borel subgroup of éc, its analogue is the Iwahori subgroup B—but
B is not a Borel subgroup, and is not the group of B-valued algebraic
loops (see §3). (2) in a similar vein, we generally use a subscript R to
denote the analogue for a real form (given a fixed involution ¢ as above)
of a complex object. For example, Gg is our real form of G¢: Gg = (G¢)°
On the other hand By, the analogue of B, is usually called a “minimal
parabolic”. It is neither solvable nor connected in general, and does not
equal B°, but nevertheless is the correct analogue of B (from the point of
view of Tits systems). (3) Given a root system @ (affine or ordinary), we
frequently confuse, identify and otherwise comingle the following sets:
(a) the simple roots (a system of positive roots having been fixed), (b) the
simple reflections, (c) the nodes of the Dynkin diagram and (d) a set of

integers 1, 2, «+ [ (or 0, 1, 2, = [) indexing all three of the above in a compatible
way.

A final word on the origin of this paper: Quillen’s work is unpublished,
and, to the best of my knowledge, he never even circulated a manuscript.
[ first learned of the idea (of using the building) from a set of notes,
kindly sent to me by Richard Kane, of a single lecture delivered by Quillen
at MIT in July of 1975. Theorems 4.1, 4.2, 4.4 and 4.7 are stated there,
and it is asserted that the methods and results carry over to symmetric
spaces. The proofs of these theorems in the present paper are {for better
or for worse) my own. The Bruhat and Iwasawa decompositions for algebraic
loop groups (or at least their topological applications) are apparently due
to Quillen and (independently) Garland and Raghunathan, although in their
algebraic form these results go back to Iwahori and Matsumoto. The
treatment here is largely based on work of Kac and Peterson [17]. Another
approach is via the “Grassmanian model” representation of Q,,,G; this too is
due to Quillen. We will not consider the Grassmanian model (or its obvious
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analogue for symmetric spaces, but see [9] for an example); there is a very
thorough account of this approach in [29].
I would like to thank Suren Fernando for some very helpful conversations.

§ 1. NOTATION AND PRELIMINARIES

Except in §2, G will always denote a compact connected Lie group of
rank [; usually we will assume also that G is simple and simply-connected.
Fix once and for all a maximal torus T in G, and let N denote the
normalizer Ng;T. The Weyl group W is N/T. Lie algebras are denoted
as usual by Gothic letter: g, t, etc. To each G we can associate a reductive
complex algebraic group G—the complexification of G—with Lie algebra
gc = g ® C. It contains G as a maximal compact subgroup, and as the
fixed group of an anti-complex involution. In fact G — G defines an equi-
valence of categories (compact Lie groups) <> (reductive complex algebraic
groups).

G¢ has a Borel subgroup (maximal connected solvable subgroup) B,
unique up to conjugacy, which we can assume contains the Cartan subgroup
(maximal algebraic torus) T¢. There is a split extension U —- B — T where
U is the unipotent radical of B. There is also an opposite Borel subgroup
B~ such that BN B~ = Tg; it fits into a similar split extension U~ — B~
— T¢. On the Lie algebra level we have gc = tc @ u @ u~, with u @ u~
being precisely the sum of the nontrivial eigenspaces for the adjoint action
of tc on gc. The corresponding eigenfunctions A:t. - C map t into iR;
as is customary we replace each A by o = A/2mi to obtain a set @ of
nontrivial R-valued linear functionals on t-the real roots. These form a
(reduced, crystallographic) root system in t*. The positive roots ®* correspond
to u, the negative roots @~ to u~. A simple system of roots a,, ..., o, (here we
assume G is semisimple of rank [) is then uniquely determined as the set
of positive roots which are not decomposable as sums of positive roots. If we
assume G is simple, so that ® is irreducible, there is a unique “highest
root” oy, which is characterized by the property that for every positive
root o, &, + o is not a root. The corresponding eigenspace in u is precisely
the center of u. And, speaking of eigenspaces, let X, denote the eigenspace
(or “root subalgebra”) of g¢ associated to o € . For each «, the subalgebra
of gc generated by X, and X _, is isomorphic to sl(2, C). The corresponding
subgroup, isomorphic to SL,C or PSL,C, 1s G ,. Choosing generators
E, for the X,, we obtain a basis for g¢, consisting of the E (ae®) and
H, = [E,, E_,] (0e®™).
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