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SOME ALMOST HOMOGENEOUS GROUP ACTIONS
ON SMOOTH COMPLETE RATIONAL SURFACES

by Lucy MOSER-JAUSLIN

In this article we are interested in certain actions of a Borel subgroup
of SL(2) on rational surfaces. More specifically, let X be a complete smooth
rational surface over an algebraically closed field k of characteristic zero.
Let B be the linear algebraic group defined by

B = {(Z 5_1>|aek*, Bek).

We study all the actions of B on X such that there is an open orbit.
This orbit is necessarily isomorphic to B/T" where I'" is a finite cyclic
subgroup of B.

Any complete smooth rational surface is obtained by blowing up one
of the minimal rational surfaces, which are well-known (see for example
[Har], [Beau] or [Saf]). In section 1, we generalize this result to surfaces
with a B-action: that is, any smooth complete rational surface with an
action of B is obtained by blowing up one of the minimal surfaces with
a B-action. Thus we are reduced to studying actions on the minimal
rational surfaces.

In section 2 we state the main result of the article. We give a complete
list of B-actions on each of the minimal models which have an open orbit.
There are two methods to do this. First, one can find all possible homo-
morphisms of B into the automorphism group of the surface which yield
the desired actions. Secondly one can study geometrically the complement
to the open orbit with the action of B. In this article we use the latter
approach.

The problem considered here is useful for the study of SL(2)-embeddings.
This is explained in section 3.

The minimal rational surfaces are almost homogeneous. That is, they
contain an open dense orbit with respect to the action of its automorphism
group. In [Pot] all complex analytic almost homogeneous surfaces are
- classified. It is shown that any such surface is either a rational surface,
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a topologically trivial P!-bundle over a one-dimensional complex torus, a
Hopf surface with abelian fundamental group, or a two-dimensional complex
torus. (See also [H-O7.) There have been other studies of almost homogeneous
surfaces. For example in [Pop] the author describes those which are affine
and such that the complement to the open orbit is a finite set of points.
In these studies one is primarily interested in the surfaces. In this article,
however, we are given the surface and the group, and we are interested
in the action.

I would like to thank Th. Vust, D. Luna, H. Kraft, and M. Brion for
helpful discussions and comments.

§ 1. MINIMAL EMBEDDINGS: DEFINITIONS AND PRELIMINARY REMARKS

Let G be a connected algebraic group and let H be an algebraic
subgroup.

Definition. An embedding of the homogeneous space G/H is a reduced
irreducible algebraic variety X endowed with a regular action of G having an
open orbit isomorphic to G/H. Two embeddings are equivalent if they are
G-1somorphic.

In this paper we study all smooth complete embeddings of B/I", where I
is a finite subgroup of B (any such I' is cyclic, and two finite subgroups
of the same order are conjugate). Since B/I" is rational and two-dimensional,
the underlying variety of such an embedding is a smooth complete rational
surface.

Given a smooth complete B/I"-embedding X with fixed point x, the action
of B on X induces an action on X, the variety obtained by blowing up x
in X, giving X the structure of a B/T-embedding. (This is a consequence
of the universal property of blowing up. See e.g. [Har], p. 164. See also
[O-W], pp. 48-49.) We say that X is a minimal B/T"-embedding if it is not
the blow up of another smooth B/I'-embedding. If X is a minimal model
as a variety (that is, if the underlying variety of X is not the blow up of
another smooth variety), then clearly X is a minimal embedding. We will
now prove the converse.

LEMMA 1.1. Suppose X is asmooth complete surface on which a connected
linear algebraic group H acts regularly. Suppose also that X contains an
irreducible curve C with a strictly negative self-intersection number. Then C
is stable by H.
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Proof. Let se H. Then since H is connected and the action is regular,
sC is linearly equivalent to C. (See e.g. [Gro], p. 5-06, Lemme 1 or
[Kam]. See also [O-W], p. 49 and [Ful] for related results.) Thus the
intersection number sC - C equals the self-intersection number C - C. Since sC
is irreducible, the assumption sC # C implies that sC-C is non-negative,
since these ‘curves intersect in a finite number of points, each counted with
positive multiplicity. ]

PROPOSITION 1.2. Suppose X is a minimal B/T-embedding. Then it is a
minimal model as a variety; that is, X is a rational minimal model.

Proof. If X is not a minimal model as a variety, then it contains an
irreducible curve C isomorphic to P! with self-intersection — 1. (Castelnuovo
criterion. See e.g. [Har] p. 414.) If we apply Lemma 1.1 to the case
H = B, we see that C is stable by B. By Zariski’s Main Theorem (projective-
smooth case) (see [Mum], p. 52), the action of B on X induces an action
on the surface obtained by blowing down C. Thus this new surface is also
a B/I'-embedding, and X is not a minimal embedding. Also X must be
rational, because B/I" is rational. L]

We recall the description of the set of minimal models of rational
surfaces (see for example [Har] Section V.2, [Beau] Ch. 1V, or [Saf] Ch. V).
For any integer n > 0, define F, = P(0p:® Upi(n)). (For k=C these surfaces
are known as the Hirzebruch surfaces.) Then F, is a ruled surface over P!.
For example, F;, = P! x P! and F, is the blow up of P? in one point.
The set of minimal rational models is given by P? and F,,n # 1.

Let us review some elementary properties of the surfaces F,. These facts
can be found in the references above. As mentioned above, F, is a ruled
surface over P*; that is, it is a P!-fibre bundle over P!. We restrict to the
case n > 1. Then there is exactly one ruling of F,, ie. there is exactly one
morphism r,: F, — P! with fibres isomorphic to P!. The bundle n,: F, — P!
has a unique section E, with self-intersection —n, and E, is the only
irreducible curve of F, with strictly negative self-intersection. The fibres
of m, are all linearly equivalent, and they are the only irreducible curves
with self-intersection 0. So any automorphism of F, stabilizes E, and
permutes the fibres. Now F, — E, is the total space of the vector bundle @(n)
over P'. All the sections of ((n) are linearly equivalent (as divisors of F,)
with self-intersection n.

If one contracts the section E, of F,,n > 1, one obtains a surface X,
(nonsingular if and only if n=1) contained in P"**. In fact X, is the closure
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of the affine cone over the n-tuple embedding P* — P” (see [Beau] Ch. IV,
Ex. 1 or [G-H], p. 523). That is,

X, = {(zo:s":5" it | 20,5, t ek} = P,

The vertex of the cone X, is (1:0:...:0). The image of a general fibre of
F, in X, is given by choosing s and t such that as = Bt for some
(o: B) e PL,

One can also construct the surfaces F, inductively: given F,,n > 1,
one blows up a point x on E, and then blows down the strict transform
of the fibre containing x to obtain F,, ;. The rational map thus obtained
from F, to F,,; is sometimes called an elementary transformation. (See e.g.
[Saf] Ch. V.)

Also, for n > 1, we have an exact sequence

1 - k* X H(PL, 0(n)) » Aut F, > PGL(2) — 1

where @ is the restriction of an automorphism to E, = P!, and k* acts on
H°(P', O(n)) by multiplication. The kernel of @ is the subgroup of auto-
morphisms that fix the fibres of n,. (See [Beau] Ch. V, Ex. 4.)

We define an action of Aut F, on H°(P', O(n)) as follows. If ¢ € Aut F,
and s is a global section of @(n), then ¢s is the section given by
(@s) (x) = o(s(p~'x)), where x € P and the action of ¢ ' on P! is given by
its action on E, = P. Thus (@s) (P') = ¢(s(P1)).

LemMMma 1.3. Let oeAutF,,n = 1, then the action of ¢ on the vector
space  H°(P!, O(n)) given above is an affine transformation.

Proof. One has to check that for s;,s, e H(P', ¢(n)) and tek* we
have that o(ts; +(1—1)s,) = t(@s;) + (1—1) (ps,). We use that given x € P*
the restriction of ¢ to the fibre ¢ ~*(n, *x) gives an isomorphism

~

k=@, 'x) S5 m,lx = k;

this transformation is affine. Now suppose we have s,,s,, and t as above;
let s = ts; + (1—1)s,. Then for any x € P! we have

(s)x = @(s(@™'x)) = @(ts1(@ ™ 'x) + (1—1)s,(¢ ™~ 'x))
= to(s;(¢7'x)) + (1 —0)o(s2(@ ™ 'x)) = Hesy)x + (1—1) (ps,)x .

This proves the lemma. O

Thus for n > 1, there is a homomorphism Aut F, — Aff (H(P*, ¢(n))
given by @ — (s—@s).
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To describe a B/I'-embedding with underlying variety X, we must give a
homomorphism B — Aut X such that X has an open orbit B-isomorphic to
B/T. Two such homomorphisms give rise to equivalent embeddings if and
only if they are conjugate.

In the following section we will use the information given here to study
the possible B/I-embeddings into P2, P! x P*, and F,,n > 1.

§ 2. THE MINIMAL B/I'-EMBEDDINGS

TueoreM 2.1. Let T be a finite subgroup of B, and let X be the
projective plane P? or a rational ruled surface F, (with n=0, where
F,=P'xP').

(i) The number emb (X) of equivalence classes of B/I'-embeddings into X
with at least two fixed points is

emb(P?) =2, emb(P!xP) =1, and emb(F,) =n+3,n=1.

We call these the “ordinary” embeddings.

(il) Moreover, for any such surface X, there is exactly one subgroup T’
and an “exceptional” B/T'-embedding into X with only one fixed point
(up to equivalence), and the corresponding order ord (X) of this group ©' is

ord(P?) =4, ord P'xPY) =2, and ord(F,) =2n+1),n=>1.

(iliy The complement to the open orbit consists of two (for P?) resp. three
(for the F, ) smooth rational curves, intersecting transversely, except in the
“exceptional” case with X = P2, in which case the two curves are tangent.

(In this theorem we include the case F; even though it is not minimal.)

To be more precise, we indicate the form of the complement Z to the
open orbit in each case. Also to distinguish the embeddings where Z has
the same form, we indicate how the action of B differs on Z. Let U be
the unipotent radical of B and T be a maximal torus. (That is, U is the
subgroup of elements of B where both eigenvalues are 1, and T can be
chosen to be the subgroup of diagonal elements.) Then B is T X U, and
the characters of B are the characters of T. We denote the character group
of Bby {o":neZ}.

Denote by c the order of the group I'.
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Embeddings into P?:

(i) “Ordinary” embeddings: We find that for each I" there are two embeddings
where Z = L, UL, and L, and L, are lines in P2 The group B acts
on L, in the standard manner and on L, by the character a**¢ or a®*
There are two fixed points except in one embedding for the case ¢ = 2,

where L, is a line of fixed points. See Fig. 1a.

(i) The “exceptional” embedding: If ¢ = 4, we also find an embedding
where Z = L; u C and C is a smooth conic which is tangent to L,

at the unique fixed point. See Fig. 1b.
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Embeddings into P x P!:

In this case, Z is always the union of three curves. Let p;: P! x P! > P!,
i = 1,2 be the two projections.

(i) “Ordinary” embeddings: For each I' there is an embedding where
Z =F,UF,UF, and F,,F’, are fibres of p; and F, is a fibre of p,.
There are two fixed points. See Fig. 1c.

(i) The “exceptional” embedding: Also, if ¢ = 2, we find another embedding
into P! x P! where Z = F, U F, uC, and C is a section of p; and p,
which intersects F, and F, transversely in the unique fixed point. See Fig. 1d.

Embeddings into F,,n > 1:

Again Z is is always the union of three curves. Let «,: F, — P! be the
unique ruling of F,, and let E, be the irreducible curve of F, with self-
intersection —n.

(i) “Ordinary” embeddings: For each I' we find n 4 1 cases where
Z =E,0OF UF and F and F' are fibres of m,. The torus T acts on F
by the character a?*2 and on F' by the character o~ “""P"2 p =0, ., n
There are either 3 or 4 fixed points (depending on the action of U on F
and F’), or, if T acts trivially on F’, then F’ is a curve of fixed points.
See Fig. le.

There are also two other embeddings in F, for each I' where Z = F
UE,uD and F is a fibre as before and D is a section of m, which
does not intersect E,. The group B acts on F by the character a®"*<
There are two fixed points except in one of the embeddings in the case
where ¢ = 2n, in which case F consists entirely of fixed points. See Fig. 1f.

(i1) “Exceptional” embeddings: Also if ¢ = 2(n+1), there is one more
embedding where Z = E, U F U C and C is a section which intersects E,
and F transversely in the unique fixed point. See Fig. 1g. This embedding is
obtained as follows. Consider the embedding into F, ., of the previous type
where the fibre F consists of fixed points. Blow up a point of F which is
not on E,.; or D and contract the strict transform of F. This gives the
required embedding into F,,.

The explicit matrix representations of the different B-actions are given
in the proof of the theorem.

Proof of the Theorem. Throughout the proof we denote the order of
the group I' by c.
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Recall that to give an embedding of B/I" into a variety X, we must find
a homomorphism ¢: B — Aut X such that under the induced action of B
on X, there.is an open orbit isomorphic to B/T. Two such embeddings are
equivalent if and only if the homomorphisms are conjugate.

We have B = {(g 5_1>luek* and Bek}, U = {((1) lf)l].’)ek},

0
and set T = {(g 0L_1>|ocek’*‘}.

We consider separately the embeddings into P2, P! x P! and F,,n > 1.

Embeddings into P?:

If B acts on P2, it has a fixed point o since P? is complete and B is solvable
(see e.g. [Bor], p. 242). Also B acts on the linear system S = {lines of P?
passing through o}. Since we have S = P*, B stabilizes one such line, which we
call L. We can choose homogeneous coordinates (zqy:z;:z,) of P? such
thato = (1:0:0)and L = (z,:2z,:0); thus o(B) = PGL(3)is upper triangular.

Case 1. U acts trivially on L.
Then there is another point o’ € L fixed by B. By choosing an appropriate

1
basis, we can assume that for <0 lf) e U we have

1 0 0
1 B
("(o 1)=[0 1 B]EPGLG).

0 0 1

The brackets indicate the class of the matrix in PGL(3). All the lines
passing through o' are stable by U. By a change of basis we can also
assume that ¢(T) is diagonal. Then for @ to be a homomorphism, it is
necessary that

a” 0 O
a P
¢ (0 a—l) =10 a P e PGL(3), meZ .
0 0 o
For m = — 1 + ¢, this gives two embeddings of B/I" with |I"'| = ¢. The

2.+

group B acts on L by the character a“*° There is another stable line

<l
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{(0:2,:2,)| z;e k} on which B acts in the standard manner. This gives the
two “ordinary” B/I"-embeddings mentioned earlier for P2.

Case 2. U acts non-trivially on L.

(i) U acts trivially on the linear system S.

Then B stabilizes another line L’ passing through o. Since we have that
P> — {Lu L} =k x k¥ = BT, and since k x k* contains no proper open
subvariety isomorphic to itself, we must have that the complement to the open
orbit is Z = L u L'. We will show that U acts trivially on L'. Indeed, let
xe L'\L and D be a line of P* passing through x but not o, and let
ue U, u # e; then uD n D is a point fixed by u since U acts trivially on S;
therefore it must belong to Z, but it is not in L; thus it is in L', henece
it is x. So by exchanging L and L', we are in Case 1.

(i) U acts non-trivially on the linear system S.

Then T stabilizes a line L' in S — L.

Fix ue U, u # e. We can choose a basis such that ¢(x) is in Jordan

1 1 0
normal form| 0 1 1 |. Now by a change of basis we can assume
0 0 1

1 28 B
0 (l' B) =10 1 B |ePGLB).
0 1 0 0 1

Let §” be the linear system of conics passing through the point 0. Now B
acts on §’, and one can easily check that US’, the set of conics stable by U
1s 1isomorphic to P*. In fact it is the set of conics of the form

{(Zo:21:2)) | alzoz,—23) + bz2 = 0}, (a:b)eP!,

Also T acts on US’: it must leave two conics invariant: the double line
L = {(zo:2,:0)} and a non-degenerate conic C. Since P? _ {Lu C} is
isomorphic to k x k*, the complement to the open orbit is I, U C. By a
change of basis one can choose

C={(z0:21:2)) | 29z, — 22 = 0} and L = {(zo:0:2;)} .

By checking the action of T on P2? — L, one finds there is just one
possibility which yields:
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o B o> 2ap P
) ( _1) = 0 1 o 'B| € PGL(3) .
¢ 0 0 a2

(So ¢ 1s obtained from the irreducible representation of SL(2) of dimension 3.)
This homomorphism gives rise to a B/I"-embedding for ¢ = 4. Note that there
1s exactly one fixed point: (1:0:0). This is the “exceptional” embedding.

Embeddings into P! x P!:

The two projections P! x P! — P! give the two different rulings of
P' x P! Any automorphism of P! x P! either leaves the two rulings
invariant or exchanges them. In other words,

Aut (P' x PY) = (PGL(2) x PGL(2)) X Z/2Z .

Since B is connected, the image of @(B) = Aut (P! x P!) is connected; thus
we consider homomorphisms ¢@: B - PGL(2) x PGL(2). Up to conjugation,
the only homomorphisms of B to PGL(2) are

a B (o B
(O oc_1> = | 4 oc_lJePGL(Z)

| .
or <g 5—1)‘*3 JePGLQ),m:O,I,Z,....

To obtain an embedding, U cannot act trivially on P! x P!. So the
possibilities (up to conjugation) are

o B (oo B | [a™ O
= Aut (P! x P! =1,2,3,..
(p(o O(_1> {0 O(—I_J’ 0 1}}6 u( X ): m s L5 =y

o BN _Jle B | [x B L pl
cp(o oc_1>_{0 o a_lJ}eAut(P x P1).

In the first case, we get an “ordinary” embedding of B/I" with ¢ = m
with two fixed points. The second induces a B/I'-embedding with ¢ = 2,
and the complement to the open orbit consists of three curves isomorphic
to P! all intersecting transversely in the unique fixed point. This is the
“exceptional” embedding.
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Embeddings into F,,n > 1:

Remember from section 1 that we can consider F, as the union of E,
and the total space of the line bundle Op:(n). Suppose we have a homo-
morphism ¢: B — Aut F, which gives rise to a B/I'-embedding. Since Aut F,
stabilizes E,, we know that B fixes E,. We consider three cases.

Case 1. U acts trivially on E,.

We will find n + 1 inequivalent “ordinary” embeddings of this type for
each T,

In this case, consider the action of T on E,. It cannot act trivially
(because then each B-orbit would be contained in a fibre of &,: F, — P*) and
has therefore exactly two fixed points, x and y. By possibly exchanging x
and y, we can assume that T acts by a character ™, m > 0 on E, = P!
(ie. for ze E, — {x, y}, we choose x = limtz and y = lim tz,t e T).

t—0 t—

The fibres F, and F, of x and y, respectively, are stable by B. Let Z
be the complement of the open orbit in F,. Then we have E, U F, U F, < Z.
Since we know that F, — {E, U F, U F,} =k x k¥ = B/T, and since, as
noted earlier, k x k* contains no proper open subvariety isomorphic to itself,
we must have Z = E, U F, U F,.

Now by Lemma 1.3, we have T ¢, B —» Aut F, — Aff (H°(P%, ¢(n)). Since
T is reductive, T must fix a section D of O(n).

We also have that U acts on the space H(P!, O(n)). Consider the orbit
UD. First note that UD = k (we could not have UD = D, because then D
would be in the complement of the open orbit). Now let ue U, u # e;
then I claim that uD n D < {x/, y'}, where x' = F,n D and y = F,nD.
To see this, note that since U acts trivially on E,, it stabilizes the fibres
of m,. Thus if z belongs to uD n D, then u belongs to the isotropy
group of z, and therefore z must be in Z. The intersection number

uD-D i1s n; so UD < D u U A,, where A, is the set of sections D’ of
p=0

O(n) such that D n D' = px' + (n—p)y counted with multiplicity. Now

D v A4,isisomorphictok,p = 0,..,n;s0UD = D U A, forsomep = 0, .., n.

We call p the contact index of the embedding. See Fig. 2.

LL:““Q_'“‘:$:
g .
En FIGURE 2.
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LEMMA 2.2. Up to equivalence, there is at most one B/I'-embedding into
F, of a given contact index p, with p = 0,..,n. Also, for such an
embedding B actson E, by the character of, where c¢ isthe order of T.

Proof. Suppose we have two B/I'-embeddings into F, with the same
contact index p. Fix ue U, u # e. For the first (resp. second) action denote
by x,y (resp. X,y) the fixed points in E, and D (resp. D) the section
fixed by T. Set D, : = uD (resp. 5,,: — uﬁ).

Remember from section 1 we know that there is an exact sequence

1 — k* X H(P', O(n)) > Aut F, - PGL(2) - 1.

Since PGL(2) acts doubly transitively on P!, we can conjugate by an
automorphism of F, which sends x to x and y to y; thus we can assume
x = x and y = y. Then by conjugating by an element of H°(P', O(n)),
which translates the sections, we can assume D = D. Finally, since the two
embeddings have the same contact index, by conjugating by an automorphism
that fixes the fibres and which is a homothety centered at D, we can assume
D, = D,.

Now I claim that for a fixed I, there is at most one possible action
of B on F, which induces a B/T-embedding with the quadruple {x, y, D, D,}.
Indeed U acts by translation on each of the fibres of ®(n); so D and D,
determine how U must act. Now check the action of T on D, which is the
same as its action on E,. Choose z € D in the open orbit. The order of the
isotropy group B, is ¢, the order of I, and B, = T. So T acts on D
by a character a*¢. Since we chose x and y such that the action of T
on E, is given by a positive character, we must have that T acts on D
by the character o°. This proves the second statement of the lemma. Now
let v be an element of the open orbit and te T. Choose ue U such that
(t"'ut)v = v' € D. Then tv = u~ 'tv'. So this fixes the action of T on the open
orbit, which is dense in F,. So the claim is true, and this finishes the proof
of the lemma. 0

u

By this lemma, we have at most n + 1 inequivalent embeddings of this
type for each I'. Now we must show that these actually exist.

LEMMA 2.3. Let n be a positive integer and p be an integer such that
0 < p < n. Then for each finite I' = B, there exists a B/T'-embedding into
F, with contact index p.

Proof. Let X, be the surface obtained by contracting E, in F, as
explained in section 1. Suppose we have an embedding of B/I' into X,
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which fixes the vertex of the cone (if n > 1, this condition 1s always
satisfied, because this point is singular). Then by blowing up the vertex, we
obtain an embedding into F,.

For each p with 0 < p < n, we will exhibit an action of B on X,
which induces a B/T’-embedding with contact index p. To do this we give
a linear action of B on k"*? which induces an action of B on P"*!
stabilizing X, and its vertex.

B acts on k? in the standard way:

o =) ()-(550)

Also for i e Z, we denote by (k, o’) the vector space k with the action of B
by the character o':

Consider the B-module

ko™ Yd & ko), p=0,..,n.
j=0
J¥Fp

We have B - PGL(n+2) = Aut P"*! by

Ca®t? et B 0 . . . 0 ]
0 a®
1
. 0
o
(i
0 a‘l) i 0 ~
[
L0 0 acn
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Ca%*? 0 ... 0 a®t B O ... 0 7]
0 1
af 0
0 o? )
S
0 0 a” _

Let X, be as given in section 1. Clearly X, and the vertex of the cone
(1:0:...:0) are fixed by this action. In X, all the “fibres” are stable by U,
and the two “fibres” F, = {(z9:2,:0:..:0)} and F, = {(29:0:...:0:z,,,)}
are stable by B. It is easy to check that the isotropy group of (0:1:..:1) is
the finite subgroup of T of order c. So this induces an embedding of
B/T" into X, which by blowing up the vertex gives a B/I'-embedding into
F, where U acts trivially on E,, .

Let D = {(0:s":5" t:..:t")} = X,. Then D is a “section” stable by T.

1
the multiplicity of the intersection of D and uD at x’ = (0:1:0:...:0). The
local ring of x" in X, is k[zg,t]y ., and the local equation of D
(resp. uD) is z, = 0 (resp. z, = t?); thus this multiplicity is p, and the contact
index of the embedding is p. This finishes the proof of the lemma. ]

1 1
Fixu = (O )e U.ThenuD = {(s" PtP:s":s" 't:...:t")} = X,. We check

Remark. By checking the induced torus actions on the fibres F, and
F,, one finds the results about the structure of the action stated after
Theorem 2.1.

CasE 2. U acts non-trivially on E, and B fixes a section D of 0O(n).

We will find two “ordinary” embeddings of this type for each I

In this case, U has one fixed point x on E,. Then T must also fix x,
and it also fixes another point y € E,. As before, we call Z the complement
to the open orbit. Then we have Z = E, u D U F,, where F, is the fibre
of m, containing x. Now look at the action of T on F,, the fibre of y.
Choose z € F,, in the open orbit. Then the order of the isotropy group B,
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is ¢, the order of T, and B, = T. So T acts on F, by the character a**.
For each such embedding, call this character the sign of the embedding.
See Fig. 3.

FIGURE 3.

LemMa 2.4. Up to equivalence, there is at most one B/I'-embedding into
F. with a given sign © = a*-

Proof. Suppose we had two actions of B on F, which yield two B/I'-
embeddings with the same sign o. For the first (resp. second) action, let
(resp. U): B x E, —» E, be the induced action on E, and D (resp. D) be the
section of ((n) fixed by B.

Up to conjugacy there is only one action of B on E, = P! for which U
acts non-trivially. So we can assume |y = \I/ By conjugating by an appropriate
automorphism of F, which fixes the fibres and translates the sections, we
can assume D = D.

Now I claim there is at most one action of B on F, which yields a
B/T-embedding with the triple {\, D, c}. To see this, consider first the action
of U on F,. Now x is the fixed point of E,, and F, is its fibre. Let S be
the set of sections of ()(n) which are not D and intersect D with multiplicity
n at the fixed point x" = F, n D. This set is isomorphic to k* (by the map
D" —» D' n F,) and is stable by B, so U acts trivially on S. Since the action
of U on D' e S is identical to its action on E,, the action of U on F, is
determined by V and D. As for the action of T, remember that T
stabilizes the set S. The action on this set is equivalent to its action on
F,, the fibre of the point of E, fixed by T and not fixed by U. This
action is given by o. So {\, D, o} determines the action of T on F,.
This proves the claim. H

From this lemma, we see that for each I, there is at most two

B/I"-embeddings of this type. Now we must show that these embeddings
actually exist.
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LemMMA 2.5. Let TI' be a finite subgroup of B of order ¢ and o
be o*‘. Then there exists a B/T-embedding into F, with sign o.

Proof. We use the same notation as in Lemma 2.3. Consider the B-module
(k, o(~n-i_-c) @ Sn(kZ)

where S"(k?) is the vector space of homogeneous polynomials of degree n
over k with two variables, and the action of B on S"(k?) is induced from
the natural action on k* of B as a subgroup of SL(2). We have
B — PGL(n+2) by

T e 0 ]
0
a B . 0 (a B )
o ol ™ . "\o ao!
0 _

where p, 1s the (n+ 1)-dimensional irreducible matrix representation of SL(2, k)
corresponding to the basis {<n> x'y* oo, ., of S"(K).
i

As in Lemma 23, let X, = {(zg:5":s" *t:..:t" | zg,5, t €k} = P"* L,
Then X, and its vertex (1:0:...:0) are fixed by the action above. In X, the
“section” {(0:s":..:t"} and the “fibre” {(zo:z,:0:..:0)} are stable. The
other “fibres” are not stable by U. The isotropy group of (1:0:...:0:1) is
the finite subgroup of T of order c. So this action gives an embedding
of B/T" into X, which by blowing up the vertex gives an embedding into F,
where U acts non-trivially on E, and B fixes a section.

The “fibre” {(z4:0:..:0:z,,,)} is stable by T and not by U. Also T acts
on this fibre” by the character a*¢, so the sign of the embedding is a®*. This
proves the lemma. . O

Remark. The group B acts on the fixed fibre of the B/I'-embedding
with sign o*¢ by the character a®"¥¢. In particular, for each n, there is
exactly one embedding of this type with ¢ = 2n where B acts trivially on
the fixed fibre. We will use this remark for the following case.

CASE 3.- U acts non-trivially on E, and B does not fix any section of (O(n).

For each n, we find one such case where ¢ = 2(n+1). These are the
“exceptional” embeddings.

[ ——



ALMOST HOMOGENEOUS GROUP ACTIONS 329

As in the previous case, B fixes one element x € E,. So Z, the complement
to the open orbit, contains E, and F,, the fibre of x. Now F, — {E, U F < 18
isomorphic to k x k; so Z must have another component. Suppose z € Z
— {E, U F,}; then C = Bz is contained in Z. Clearly C is a section of
n,: F, - P!, and by hypothesis it in not a section of O(n); thus it is a
section of m, which intersects E, at the point x. We have Z = E,u F,u C,
since F, — {E, U F,u C} = k x k*

LEMMA 2.6.

(i) Suppose c¢ = 2(n+1). Then there is exactly one embedding of B/’
into ¥, of Case 3 with C-E, = 1. Also for this embedding there is a

unique fixed point.
i) If ¢ # 2(n+1) there is no such embedding with C- E, = 1.
Proof. Recall from section 1 that one obtains F, ,; from F, by blowing up

a point x on E, and contracting the strict transform of the fibre con-
taining x.

K

T

FIGURE 4.

Now suppose we have such an embedding with C- E, = 1. We blow up
the point x. (See Fig. 4) Now there are three fixed points on the exceptional
divisor F,, so B acts trivially on F,. Blow down F ., We obtain an
embedding into F,,,; as in Case 2, where B acts trivially on the fixed fibre.
As we have seen in the remark of Case 2, this happens in exactly one case
with ¢ = 2(n+1). Conversely, given this embedding into F, ., by doing the
reverse procedure, one obtains exactly one embedding of this type. (By
changing the fixed point which is blown up first one obtains an equivalent
embedding.) This proves everything except the unicity of the fixed point.
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Now we exhibit explicitly the embedding of (i). We use the notation of
Lemmas 2.3 and 2.5. Consider the B-module $"* 1(k?). We have B - PGL(n+2)

’ 3Ll b))

where p,.; 1s the (n+2)-dimensional irreducible representation of SL(2, k).
Consider the closure of the orbit of x"*! + y"*! by B using the basis

n+1\ . . .
{< : )x‘y”“_’}izo,__”nﬂ. This is exactly

X, ={(zg:s":5" Mt it | 2o, 5, L€k} .

The vertex (1:0:..:0) i1s fixed by this action. The two stable curves in X,
are the “fibre” {(zo:z;:0:..:0)} and {(s""':s":..:t""1)}, the image of the
(n+ 1)-uple embedding of P! in P"*!. It is easy to see that the isotropy
group of (1:0:..:0:1) is the finite subgroup of T of order ¢; so this
action gives a B/I"-embedding into X, which induces an embedding into F,.
Since the only fixed point on X, is the vertex and there is only one fixed
“fibre”, we have exactly one fixed point for the action on F,,. It is easily checked
that the intersection number of E, with the other stable section in F,
is 1. Thus the lemma is proven. : ]

LeEMMA 2.7. Any embedding of Case 3 must have C-E, = 1.

Proof. The intersection number C - E, = p is strictly positive. Suppose
that p > 1. Now blow up x and then contract the strict transform of F,;
we obtain an embedding into F,,;. Let C, be the strict transform of C
in F,,,; then the intersection number C,-E,,, is p — 1. Also, this new
embedding has at least two fixed points: one on E,,; and the other the
image of the strict transform of F, in F,,;. By doing this process p — 1
times, we get an embedding into F,, ,_; of Case 3 with C,_,-E,,,_; = 1~
and at least two fixed points. By Lemma 2.6 this is impossible. Therefore

we must have p = 1. (See Fig. 5.) ]
F . 5:1 c Fp_1
1
Cp_I
< — S —>
En \ En+1 En+p—1

F, F i Fovp-t

FIGURE 5.
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This finishes Case 3. Thus we know all the embeddings into P?, P* x P!
‘and F,,n > 1. The comments after Theorem 2.1 are easily verified by
checking each embedding. This finishes the proof of the theorem. O

Remarks.

(1) Note that — as to be expected — all the embedding into F, are
obtained by blowing up the embeddings into P? at fixed points.

(2) The “exceptional” embeddings, i.e. those with only one fixed point,
are of special interest, because this phenomenon does not occur for smooth
complete embeddings of tori. (See [KKMS] for a reference on torus
embeddings.)

§ 3. APPLICATION TO SL(2)-EMBEDDINGS

In [LV] a combinatorical method is presented in order to classify all
normal SL(2)-embeddings. A natural question is how to classify those which
are smooth and complete to obtain a geometrical realization. We now sketch
how the result of this article is useful for this. (For further details see [JM].)

Given a B/I'-embedding X, we construct an SL(2)/I'-embedding in the
following way. Consider the B-action on SL(2) x X given by

b-(s,x) = (sb™ %, bx)

where b € B, s € SL(2), and x € X. Denote by SL(2)*5X the variety obtained by
quotienting by this action. The action of SL(2) on this variety by left
multiplication endows it with the structure of an SL(2)/I'-embedding.
The projection SL(2) x X — SI(2) induces a locally trivial fibre bundle
SL(2)+3X 5 SL(2)/B = P!. The morphism p is SL(2)-equivariant, and the
fibre of p is B-isomorphic to X. So we see that for studying the geometry
of the SL(2)/T-embeddings of this form it is useful to study the B/I-
embeddings.

As for general SL(2)/T-embeddings one finds the following essential result.
Let I' be a finite cyclic subgroup of SL(2). Let V be a smooth SL(2)/T-
embedding with orbit Y. Then there exists a Borel subgroup B of SL(2)
containing I" and an SL(2)-stable open neighborhood of Y in ¥V which is of the
form SL(2)*3X for some smooth B/T'-embedding X. Thus all smooth
SL(2)/T-embeddings are locally of the form above. Also any smooth

B/I'-embedding can be completed to a smooth embedding. Thus it is enough
to study the complete ones.
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We can use this fact, for example, to study blow-ups of orbits, since

blowing

up is a local property. Thus we can find the minimal SL(2)/T-

embeddings. This is done in [JM], Chapter IV, forI" = {e}and " = { +e}.
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