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Par conséquent est un sous-ensemble borné de J£?(Rn), espace vectoriel des

endomorphismes de R", normé par

Il w II - sup II u{x) Il

Il x II 1

Lemme 2. Pour tout groupe compact <3 contenu dans i^(R"), il existe

une forme quadratique ®, à valeurs strictement positives hors de 0, et

invariante par

Démonstration. Soit p la mesure de Haar du groupe et cp une forme

quadratique, à valeurs > 0 hors de 0; en posant ® cp o udpfu), on

définit une forme quadratique qui a les propriétés requises.

D'une autre façon, on peut appliquer un théorème démontré par
Hochschild ([4], XV 3-1): G1 étant la composante connexe de l'élément neutre
du groupe de Lie G, on suppose G/G1 fini; il existe alors un sous-groupe
compact K, tel que tout autre sous-groupe compact de G soit contenu
dans un conjugué de K ; dans le cas présent on prend G GL(n, R), et
le rôle de K peut être joué par 0(n) qui en est un sous-groupe compact
maximal.

II. La boule unité de £?{E)

Soit E un espace vectoriel réel de dimension finie n, muni d'une norme N,
et E£{E) l'espace vectoriel des endomorphismes de E muni de la norme JE
des opérateurs:

Jf{u) sup N o u(x).
N(x) 1

Soit é%N la boule unité fermée de J?(E).

Lemme 1. Soit N non euclidienne, l'ensemble des isométries
linéaires pour N, XN l'enveloppe convexe fermée de Alors l'inclusion
jTn cz est stricte.

Démonstration. Le choix d'une base de E permet de se ramener à la
situation du paragraphe I, et de prouver l'existence d'une forme quadratique
> 0 hors de 0, invariante par &N. Munissons E de la structure euclidienne
définie par cette forme quadratique; de cette façon est contenu dans
le groupe des isométries euclidiennes de E
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Par ailleurs posons BN {x g E | N(x) ^ 1} ; si BN était une boule
euclidienne, la norme N serait proportionnelle à la norme euclidienne de E, et

serait elle aussi euclidienne.

Il existe donc deux éléments de E, notés xx et x2, tels que N(x1)
N(x2) 1, et que x1 et x2 soient de normes euclidiennes distinctes;

xx et x2 engendrent un espace vectoriel F de dimension 2, et BN n F
n'est pas un « disque ». Nous allons montrer par l'absurde que BN n F
admet en au moins un point x0 une droite d'appui D0 (voir [2] § 5, déf. 3)

non orthogonale à x0.
Si ce n'était pas le cas, la frontière du convexe BN n F pourrait alors être

définie par une équation polaire du type p /(0), où / serait dérivable

par suite de l'unicité de la droite d'appui (voir [9]); mais cette droite
d'appui étant orthogonale au « rayon », on aurait nécessairement /'(0) 0

pour tout 0, donc /(0) constante, ce qui contredit le fait que x1 et x2
sont de normes euclidiennes distinctes.

L'existence de x0 est donc établie ; en vertu du théorème de Hahn Banach

(voir [2] § 5), Bn admet en x0 un hyperplan d'appui H0 contenant D0,
donc non orthogonal à x0 (notons que H0 peut ici être construit par récurrence

puisque la dimension de E est finie). Par symétrie, BN admet en — x0 un
hyperplan d'appui parallèle à H0.

Soit v la projection de E sur Rx0, parallèlement à H0. On a v(BN)

a Bn, donc .jV(v) 1, et veMN, Par ailleurs j[ v || sup || v(x) || > 1,
Il x 8 « i

car v augmente strictement la norme euclidienne de tout vecteur non nul

orthogonal à H0. Nous allons montrer que v appartient à MN\ifN.

Remarquons d'abord que J'f(E) est de dimension n2, et donc tout élément
de Jfjv peut s'exprimer comme barycentre d'au plus n2 + 1 éléments de

(théorème de Carathéodory, [2] § 2 exercice 9).

Si l'on avait v e il existerait alors

tels que v — ^ vt et 1 £ at. Chaque vt est une isométrie euclidienne
m m

(inclusion de yN) ; on aurait donc

m m

1 < II v II ^ X aî II vi II Yjai ^
' d'où la contradiction

î î
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Lemme 2. Munissons E d'une norme euclidienne; soit la boule unité

qu'on en déduit dans £f(E). Alors tout élément extrémal ([2] § 7, déf. 1)

de est une isométrie euclidienne de E.

Démonstration. On suppose le résultat acquis pour la dimension n — 1 ;

soit u g 5£(E\ tel que || u || 1, mais que u ne soit pas une isométrie. Il
existe xx g E, tel que || «(xj || || xx || > 0; composant u avec une rotation,

on se ramène au cas où u(xt) xx.
L'orthogonal F de est stable par u; en effet pour yeV et te R,

on a
Il u(xx + ty) Il

2 < Il xi + ty II
2

c'est-à-dire

Il m(xx) Il
2 + 2t(x11 u(y)) + t2 II u(y) ||

2 ^ || xx ||
2 + t2 || y ||

2

d'où (xj | u(y)) 0, u(y) e V, u(V) a V.

Mais la restriction de u à F n'est pas une isométrie (car alors u en

serait une). D'après l'hypothèse de récurrence, on peut écrire

u\v (iq + u2)/2, où u1 ^ u2 et || ux | || u2 |{ 1

On peut prolonger ux et u2, de F à E, en üt et u2e& tels que les

restrictions de ux et u2 à Rxx soient l'identité. Comme u (u1-hu2)/2 et
ü± ^ u2, u n'est pas un point extrémal de

Désormais pour tout convexe A, on note ôA l'ensemble des éléments

extrémaux de A.

Théorème 1. Soit E espace vectoriel réel de dimension finie. Alors

1) Pour toute norme N sur E, on a a d0$N.

2) L'égalité d&N, équivaut à l'assertion : N est euclidienne.

Démonstration.

1) Soit ugc§n. Supposons que u (u1 + u2)/2, avec ux et u2e&N.
Si Bn est la boule unité fermée de E, on a u{ôBN) dBN. Pour xedBN,
l'égalité u(x) (w1(x) + w2(x))/2 implique a x(x) u2(x) u{x). Les restrictions
de a, ux et u2 à dBN sont identiques, donc u ux u2, et finalement
u g d&N.

2) D'après le lemme 1 ci-dessus, on a d@N # lorsque N n'est pas
euclidienne. Inversement supposons N euclidienne ; le lemme 2 permet d'écrire
d@N c= <gN. Puisque, d'après 1), l'inclusion inverse a lieu, on en déduit
d@N <&N.
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