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Par conséquent ¢, est un sous-ensemble born¢ de #(R”"), espace vectoriel des
endomorphismes de R”, normé par

lul = sup [ulx)l.

>l =1

LEMME 2. Pour tout groupe compact % contenu dans Z(R"), il existe
une forme quadratique ®, a valeurs strictement positives hors de 0, et
invariante par 4.

Démonstration. Soit p la mesure de Haar du groupe 4, et ¢ une forme

quadratique, a valeurs > 0 hors de 0; en posant ® = J © o udp(u), on
K7

définit une forme quadratique qui a les propriétés requises.

D’une autre fagon, on peut appliquer un théoréme démontré par
Hochschild ([4], XV 3-1): G, étant la composante connexe de ’élément neutre
du groupe de Lie G, on suppose G/G, fini; il existe alors un sous-groupe
compact K, tel que tout autre sous-groupe compact de G soit contenu
dans un conjugué de K; dans le cas présent on prend G = GL(n, R), et
le role de K peut étre joue par O(n) qui en est un sous-groupe compact
maximal.

II. LA BOULE UNITE DE #(E)

Soit E un espace vectoriel réel de dimension finie n, muni d’une norme N,

et Z(E) lespace vectoriel des endomorphismes de E muni de la norme A~
des opérateurs:

A(w) = sup N oux).

N(x) =1

Soit #y la boule unité fermée de L(E).

LEMME 1. Soit N non euclidienne, %y [lensemble des isométries

linéaires pour N, Ay [lenveloppe convexe fermée de Gy. Alors linclusion
Ay < HBy est stricte.

Démonstration. Le choix d’une base de E permet de se ramener a la
situation du paragraphe I, et de prouver I’existence d’une forme quadratique
> 0 hors de 0, invariante par %y. Munissons E de la structure euclidienne

définie par cette forme quadratique; de cette fagon %y est contenu dans
le groupe des isométries euclidiennes de E
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Par ailleurs posons By = {x € E | N(x) < 1}; si By était une boule eucli-
dienne, la norme N serait proportionnelle a la norme euclidienne de E, et
serait elle aussi euclidienne.

Il existe donc deux éléments de E, notés x; et x,, tels que N(x,)
= N(x,) = 1, et que x; et x, soient de normes euclidiennes distinctes;
x; et x, engendrent un espace vectoriel F de dimension 2, et Byn F
n’est pas un «disque ». Nous allons montrer par 'absurde que By n F
admet en au moins un point x, une droite d’appui D, (voir [2] § 5, déf. 3)
non orthogonale a x,.

Si ce n’était pas le cas, la frontiére du convexe By n F pourrait alors étre
definie par une €quation polaire du type p = f(0), ou f serait dérivable
par suite de l'unicité de la droite d’appui (voir [9]); mais cette droite
d’appui ¢étant orthogonale au « rayon », on aurait nécessairement f'(6) = 0
pour tout 6, donc f(0) constante, ce qui contredit le fait que x; et x,
sont de normes euclidiennes distinctes.

L’existence de x, est donc établie; en vertu du théoreme de Hahn Banach
(voir [2] §5), By admet en x, un hyperplan d’appui H, contenant D,
donc non orthogonal a x, (notons que H, peut ici €tre construit par récurrence
puisque la dimension de E est finie). Par symétrie, By admet en —x, un
hyperplan d’appui parallele a H,,.

Soit v la projection de E sur Rx,, parallelement a H,. On a u(By)

< By, donc A (v) = 1, et ve ABy. Par ailleurs | v || = sup | ov(x) | > 1,

Ix]l <1
car v augmente strictement la norme euclidienne de tout vecteur non nul
orthogonal a H,. Nous allons montrer que v appartient a Zy\A y.

Remarquons d’abord que Z(E) est de dimension n?, et donc tout élément
de Ay peut sexprimer comme barycentre d’au plus n® + 1 éléments de
94y (théoreme de Carathéodory, [2] § 2 exercice 9).

Si 'on avait v € Ay, il existerait alors

{vl,vz,..., UV, E DGy (m<n?+1)

gy ULyy ey Uy € 10, 1[

m

m
tels que v = » o;u; et 1 = ) o;. Chaque v; est une isométrie euclidienne
T T

(inclusion de %y); on aurait donc

m m
<ol <Yollvll =)o =1; doula contradiction .
1 1
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LEMME 2. Munissons E dune norme euclidienne; soit % la boule unité
qwon en déduit dans L(E). Alors tout élément extrémal ([2]8§7, def. 1)
de A est une isométrie euclidienne de E.

Démonstration. On suppose le résultat acquis pour la dimension n — 1;
soit ue Z(E), tel que | u| = 1, mais que u ne soit pas une isométrie. Ii
existe x, € E, tel que || u(x;) | = || x; || > 0; composant u avec une rotation,
on se rameéne au cas ou u(x;) = Xx;.

L’orthogonal ¥ de x, est stable par u; en effet pour yeV et teR,
on a

Fuley+etn) 12 < I xy + v |12,
C’est-a-dire

| u(xo) 12+ 2e(x fu() + 2 Ju@) 12 < I x 12+ 20y )7,

d’ou (x; |u(y)) = 0, uy)eV, uwlV)c V.
Mais la restriction de u a V n’est pas une isométrie (car alors u en
serait une). D’aprés I’hypothése de récurrence, on peut écrire

uly = (up+uy)/2, ou uy #Fu, et Jull=lul|=1.

On peut prolonger u, et u,, de V a E, en u; et u, e # tels que les
restrictions de u, et u, a Rx, soient lidentité. Comme u = (u, +u,)/2 et
u; # u,, u n’est pas un point extrémal de 4.

Désormais pour tout convexe A4, on note dA I'ensemble des éléments
extrémaux de A.

THEOREME 1. Soit E espace vectoriel réel de dimension finie. Alors

1) Pour toute norme N sur E, ona 9y < 0%y.
2) Légalitée 4Gy = 0%y, équivaut d Passertion: N est euclidienne.
Démonstration.

1) Soit ue %y. Supposons que u = (u;+u,)/2, avec u;, et u, e By.
S1 By est la boule unité fermée de E, on a u(0By) = 0By. Pour x € 0By,
Pegalité u(x) = (u,(x)+u,(x))/2 implique u;(x) = u,(x) = u(x). Les restrictions
de u, u; et u, a 0By sont identiques, donc u = u, = u,, et finalement
ueoRy.

2) Drapres le lemme 1 ci-dessus, on a 0%y # ¥y lorsque N n’est pas
euclidienne. Inversement supposons N euclidienne; le lemme 2 permet d’écrire

0By = 9y. Puisque, d’aprés 1), Iinclusion inverse a lieu, on en déduit
5%[\] = gN'
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