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A KALUZA-KLEIN APPROACH
TO HYPERBOLIC THREE-MANIFOLDS

by Peter J. BRAAM

§ 1. INTRODUCTION

In the recent past Thurston has caused a revolution in three-dimensional
topology with the creed: “Every 3-manifold is essentially geometric”. In
particular a large class of 3-manifolds with boundary can be supplied
with a hyperbolic structure. This situation is much the same as that for
two-dimensional surfaces, which can also be given hyperbolic structures.
Another even more recent revolution in mathematics came about when
mathematicians started paying close attention to the methods employed in
theoretical physics. In particular S. K. Donaldson found deep applications
of Yang-Mills theory to four-dimensional topology.

On three-dimensional manifolds there exists a set of partial differential
equations, the Bogomol'nyi equations, which describe magnetic monopoles
in M. This equation is closely related to the Yang-Mills equation in
dimension four, and can only be formulated in presence of a Riemannian
metric and orientation on the 3-manifold. In the last three sections of this
paper we shall study some aspects of this equation on hyperbolic 3-manifolds.
Kaluza-Klein theory, another favorite of the physicists, leads to a natural
way to study these equations, thereby circumventing a large amount of
analysis associated with more direct approaches. Basically Kaluza-Klein
theory amounts to studying space through the geometry of a fibre bundle
over space. In our case this fibre bundle over a hyperbolic 3-manifold is
simply the product of the manifold with the circle. The analytical problems
alluded to above are largely due to the fact that a 3-manifold with boundary,
supplied with a hyperbolic metric, is very non-compact as a metric space.
Although this is not changed by taking the product with a circle, it turns
out that this 4-manifold has a natural conformal compactification (yet
another popular ingredient in physical theories).

The upshot is (§2) that we canonically associate a conformally flat,
compact 4-manifold (without boundary) with a circle action, to a hyperbolic
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3-manifold (provided some conditions are satisfied see § 2). This provides a
link between conformal geometry in dimension 4, and hyperbolic geometry
in dimension 3. It is very similar to Poincaré’s observation in 1883 that
hyperbolic geometry in dimension 3 is related to conformal geometry in
dimension 2, by considering the boundary surfaces of a hyperbolic 3-manifold.

In going over to the 4-manifold, no information is lost. This allows one
to deduce precise facts concerning the 3-manifold from known facts about
conformally flat 4-manifolds; therefore, before we start studying the Bogo-
mol'nyi equation, we study some global differential geometric questions
concerning hyperbolic 3-manifolds in the light of the conformal compacti-

fications.

In particular we can exploit recent work of Schoen and Yau to classify
a family of hyperbolic 3-manifolds (§ 3), namely those which are geometrically
finite without cusps and have a limit set of Hausdorff dimension < 1.

On the analytical side, knowledge about conformally invariant differential
operators in dimension 4 can be exploited to obtain a Hodge theory for
hyperbolic 3-manifolds (§4). This answers a question posed by Thurston.
We prove that the L*-cohomology in dimension 1 of the 3-manifold is
equal to the de Rham cohomology with compact supports. On the universal
cover H?, Poisson transformation gives an identification between closed and
co-closed one forms on H* and closed hyperfunction one forms on 8H3.
Our L? harmonic forms now correspond to closed, invariant currents on 8H?>
with support in the limit set. Additionally this theory gives an invariant of
the hyperbolic structure, of a type familiar from algebraic geometry.

After these digressions we start studying magnetic monopoles on the
hyperbolic 3-manifolds by relating them to S!-invariant instantons on the
4-manifolds. Relevant definitions and background can be found in § 5.

The twistor spaces associated to the conformally flat 4-manifolds are
studied in §6. Not only do these provide a way to study monopoles,
they also encode a wealth of geometrical information belonging to the
3-manifold such as the entire geodesic flow. Finally in §7, we use the
twistor theory to construct some explicit formulas for monopoles on handle-
bodies. Here we naturally encounter the Fisenstein series associated to the
hyperbolic 3-manifold.

We end this introduction by briefly indicating what kind of future
developments can be expected. The compact 4-manifolds should allow for
easy study of many natural differential operators on the 3-manifold; in
§ 4 it is indicated how. Using generalizations of Poisson transformation to
fields of higher spin, it seems very likely that a wealth of hyperfunction
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objects with support in the limit set can be obtained. The twistor spaces
may provide a natural environment to study theorems about the 3-manifold
which rely on properties of the geodesic flow. In particular one could try
to prove Mostow’s theorem (and Thurston’s generalisation of it) along the
lines outlined in § 6.

From an analytical study of monopoles it is known that monopoles
exist under reasonable conditions. This shows that there are interesting
holomorphic bundles on twistor space. Understanding the structure of these
will almost certainly reveal a large amount of geometry and analysis
associated to the hyperbolic manifold. Finally, properties of the moduli
spaces of monopoles which are independent of the metric on the 3-manifold
are topological invariants of the 3-manifold. This is related to the work of
Donaldson and Casson.

Acknowledgements: 1 am deeply indebted to my DPhil supervisors,
Prof. Sir Michael Atiyah and Prof. Hans Duistermaat. Apart from this
discussions with professors David Epstein, Pierre Gaillard, Claude LeBrun,
Bernie Maskit and Karen Uhlenbeck have helped enormously. A British
Council/Foreign Office Scholarship and leave from Utrecht State University
are gratefully acknowledged. The final stages of this work were partially
supported by a C&C Huygens Fellowship from the Netherlands Organisation
for the Advancement of Science.

§ 2. CONFORMAL COMPACTIFICATIONS AND THEIR TOPOLOGY

Let M be an oriented, irreducible, atoroidal, compact, three-dimensional
manifold with non-empty boundary 8M. Atoroidal means that every map
T? - M has a kernel on the level of fundamental groups. For simplicity
we shall avoid cusps and thus we assume that:

2.1 either no component of SM is of genus 1 or M = D? x S!.

Thurston’s uniformization theorem (see Morgan [29]) asserts that there is
a complete, geometrically finite, hyperbolic structure on M = M — $M. This
means that M can be realised as follows (see Bers [7], Maskit [27],
Morgan [29], Beardon [6] for background).

Recall that PSL(2, C) = SL(2, C)/{ £ 1} is the isometry group of hyperbolic
3-space H?, and that the right action of an isometry on H* = SU2)\SL(2, C)
extends over the boundary S? = §H® as an action by a fractional linear
transformation of S®. A Kleinian group T without cusps 1s a discrete



278 P. J. BRAAM

subgroup of PSL(2, C) all elements of which are loxodromic (i.e. have
exactly two fixed points in H>= H® U $?), and which acts freely and
properly on a non-empty open set Q < S? (Felix Klein, the man of the
dicrete groups, and Oscar Klein, of the Kaluza-Klein theories mentioned in
the introduction, are not the same). Proper means that the map Q x I
- Q x Q:(x,v) - (xy, x) is proper. Proper actions are well behaved, and a
proper free action has a smooth quotient, see Gleason [14].

There 1s a preferred region Q(I'), in which I' acts properly. Define the
limit set A(I') of the group I'" to be the set of all yeS? such that there
is a sequence of different elements y;eI' and an x e S* with y;-x — y.
The region of discontinuity Q(T) is the complement S? — A(I'), and T' acts
properly on Q(I'). The limit set may be quite wild and has Hausdorff
dimension dimyzA(I') € [0, 2]. If no confusion is possible we shall denote
Q") by Q and A(T') by A.

The number of components of Q is 1, 2 or infinite, and Q/T" is a
collection of N Riemann surfaces S,, .., Sy, where N is the number of
I'-orbits in the set of components of Q (N can be infinite). It is well known
that the I'-action on H?® is proper and that it extends to a proper action
on H?® — A; therefore (H®>—A)/I" is a smooth manifold with boundary
QI = u;S;.

In order to ensure that (H>—A)/I" is compact we introduce another
notion. The group I' is said to be geometrically finite iff there is a finitely
sided fundamental polyhedron (Maskit [27]) for the I'-action on H?>. In this
case the quotient M = H3/I" is the interior of a compact, smooth manifold
M = (H*—A)/T" which has boundary M = QT, now equal to a finite
collection of compact Riemann surfaces without boundary. In this case the
hyperbolic structure on M is said to be geometrically finite. If I' = {e}
we have N = 1, S; = S% and if " is cyclic then N = 1, S; = T?; in both
of these cases Q is connected. In all other cases every S; is a surface of
genus > 2.

The conjugacy class of I' in PSL(2, C) is not uniquely determined by M
as a smooth manifold; in fact continuous deformations of the complete
hyperbolic structure on M can be realized by deforming the embedding
I' - PSL(2, C). Thus the situation is much the same as that for Riemann
surfaces, which also admit families of hyperbolic structure (or equivalently
complex structures).

As a metric space, M endowed with such a hyperbolic structure is
highly non-compact, and the boundary surfaces lie at infinity, i.e. they are the
celestial surfaces in M. Following the physical idea of a Kaluza-Klein theory
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we shall study the fibre bundle M x S* over M instead of M itself.
Another popular notion in physics is that of a conformal compactification:
M x S' has a natural conformal compactification X without boundary
(or X if we want to indicate the dependence on I'), i.e. there is an injective
conformal immersion M x S! — X onto a dense subset. To get X we spin M
around 8M, see figure 1, ie. X is M x S! with the circles over 8M
identified to a point. This gives a compact 4-manifold X with an S!-action.
The action is free away from the fixed point set, which is isomorphic to the
boundary 8M = U;_; »S;. The normal bundles of the S; are trivial and of
S'-weight 1. For example take M = S x R with S a surface. Then X is
the compactification of S§ x R x S = § x C* thatis X = S x S?, where S*
acts on S* by earth rotation and has two fixed surfaces S x {0, 0} in X.

Component of 6M =
s'-fixed surface

end of M

'S1 -orbits

FIGURE 1.

In order to relate the hyperbolic structure on M to a conformal structure
on X we proceed more formally. Recall that H® = {(x,y,t)eR®;t > 0}
with metric ds* = (dx?+dy?+dt?)/t2. It follows that: |

2.2 i: H® x Sl’—1»(R26—)R‘7‘)—(R?‘EBO)E’R‘L——R2 > 84 §2.
((x, y,£),8) > (x, y, tcos 9, ¢ sin 9)

is an orientation preserving, conformal difftomorphism. The map i intertwines
 the S*-action on H® x S§* with rotations in the second summand of R2 @ R2.
- The S*-action extends to $* with fixed point set §2 = (R2@0) U {00} = §*.
+ This fixed point set corresponds to §H> x S! under:
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2.3 it H? x St > §*,

the continuous extension of i. To get further we shall show that the
compactification S* of H® x S?! is natural enough to transfer group actions
from H? to S* The maps i and i’ are equivariant with respect to the group
St x PSL(2, C), which will act on the right on S* by conformal transfor-
mations. To see this, recall that the PSL(2, C)-action on S* which is the
quaternionic projective line HP' = H*\(H?>—{0}) (ie. divide out the left
action of multiplication by invertible quaternions), is by fractional linear
transformations:

2.4 ([x, v, [Z ZD = [xa+ yb, xc+ yd]

As a result a geometrically finite Kleinian group I' acts on S* The
limit set A’ of the I'-action on S* equals (A x S?), so it is contained in the
St-fixed point set S* = S* Clearly A’ is isomorphic to A, and we shall
simply identity A and A’. The restriction:

i (H*—A) x St - §* — A

1s proper, equivariant and surjective. This implies immediately that the
I-action on S* — A is proper. Since I' is geometrically finite the quotient
X = ($*—A)/T is compact and without boundary. Finally, the fact that the
I-action is free ensures that X is smooth and inherits a smooth S*-action.

The S*-action is free away from the fixed surfaces S;, which correspond
as conformal surfaces to Q/I' = BH>—A)/T = I(SH>*—A)xSY)I. It is

useful to realise that i and i’ induce mapsi: M x S* - Xandi': M x S' - X.
Summarizing we have proved:

TuEOREM 2.1. Let M be an oriented, geometrically finite, complete
hyperbolic 3-manifold with non-empty boundary M = U S ; satisfying 2.1.
Then M x S' has an oriented, smooth conformal compactification X
(without boundary) upon which S' acts. X is conformally flat and the
St-action is free away from its fixed surfaces S;(j=1, .., N) which correspond
as conformal surfaces to the boundary surfaces of M. The normal bundles
N; of S; in X are topologically trivial and of S'-weight 1. The
hyperbolic structure on M can be reconstructed from X by giving
X —(US;) that metric in the conformal class for which the S*-orbits have
length  2n. Then M is the Riemannian quotient of X — (u;S;)

by S O
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Remark. It is worth pointing out that if one chooses an equatorial
embedding of S in S"*! then any conformal transformation of 5" extends
uniquely to a conformal transformation of §"*1 leaving invariant the com-
ponents S"*! — S" Thus if T'" is a group acting on S” then it also acts
on S"*1. A Kleinian group can be thought of as a group acting on S°
with limit set in an equatorial S2. Theorem 2.1 now says that if T is
geometrically finite and purely loxodromic then in S* we have A(I) = S?
= §* and I)/T is a compact 4-manifold.

The existence of a conformal compactification is not automatic. It is
easy to see that R® x S! cannot be compactified by adding an S? at
infinity.

The topology of X is easily described:

PROPOSITION 2.2.

a) m,(X,m) = n,(M,m) for meS; (S, a fixed or boundary surface).
b) There are natural isomorphisms H (M, 8M ;Z) - Hy(X ;Z) and

Hy(M;Z) @ H\(M, 8M;Z) - Hy(X ;Z)

The two summands of H,(X;Z) (modulo torsion) are isotropic and dual to
each other under the intersection form Q on H,(X;Z); consequently the

0 1 ~
signature o(X) = 0, and Q = n times [1 0], with n = tk H,(M ; Z).

¢) n(X) = Z;x(S;) with v denoting the Euler characteristic.

d) Spin structures on X exist and the double cover of S* acts naturally
and effectively on any spin structure.

Proof. a) Of course this is what one expects to be true: n (M x S, m)
> n,(M, m) x Z, but the Z factor is killed by shrinking the circles to a
point. Formally, remark that a tubular neighbourhood of U §; looks like
(U S;) x D?, and apply the Seifert-van Kampen theorem.

b) Define j: M — X by j(m) = i'(m, 1). Up to S'-rotation j is defined
uniquely by the conformal structure of X. This induces a homomorphism
Ju: H,(M;Z) —» H,(X ;Z). Next remark that if ¢ is a chain in C; (M, 3M ; Z)
then i’ (cxS") is a chain in C;, (X ;Z), because the circle shrinking to
a point enforces 8i’(cxS') = 0. Taking a careful look at the Mayer-
Vietoris sequence applied to (U S;) x D* and M x S' shows that this
gives natural isomorphisms as indicated in the proposition. The pro-

pertigs of the inzersegtion form Q follow from the intersection pairing:
H,M;Z) x H(M, M ;Z) - Z.

c) This 1s easy, using either a and b, or equivariant Lefschetz formulas.
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d) Every orientable 3-manifold admits a spin structure, see Stiefel [35].
Give S' the spin structure corresponding to the connected double cover,
which extends to the disc in R?; therefore a product spin structure on
M x S' extends to X. Clearly every spin structure on X arises in this
way. The double cover of S! is needed to define an action on the spin
structure of the orbits in X. O

The spin bundle of H?® is the Spin(3) = SU(2) bundle SL(2,C) — H?>
= SU2)\SL(2, C); thus a spin structure on X is in fact nothing else but
a lift of the homomorphism r: I" - PSL(2, C) which defines M, to a homo-
morphism ' : I" —» SL(2, C).

If N denotes the number of boundary components of M (as before)
then it follows from the exact sequence of the pair (M, 0M) that:

2.5 tk Hy(X:Z) = 2-tk H,(M,8M;Z) > 2-(N—1)
Another useful fact to keep in in mind is:
2.6 rk {ker (H,(8M ;Z) » H,(M ;Z))} = 3.tk H,(3M ;Z),

which can easily be deduced from Alexander duality and the exact sequence
of the pair (M, 6M).

A 0
Examples 2.3. 1) If T is the cyclic group generated by |:0 7\‘1} with

A € C* then the limit set equals {0, co} in the coordinates on 8H> supplied
by the upper half space model. It is easy to see that M = H>/T' = D? x S
To find X, it is easiest to divide out the I'-action on S* — A = C*> — {0}
which is given by (zq, z;) = (A*zo, | A |%z;). As a result X is a Hopf surface
difftomorphic to S® x S'. The S'-action is given by (zq, z1) — (2, €°z}),
so the fixed surface is the two-torus C*/<A?*>.

2) If T is Fuchsian, i.e. T = PSL(2, R), then H?/T" is a compact Riemann
surface without boundary S of genus > 2 with metric ds®. The 3-manifold M
is difftomorphic to R x S with metric given by dI*> + cosh?l - ds*. Clearly it
follows that X must be diffeomorphic to S% x S. A little computation
shows that X is even conformally equivalent to S? x S. Thus X is con-
formally equivalent to the Kéhler surface CP* x S.

From the point of view of Kleinian groups, we remark that Q is the °
union of two round discs which are both invariant under I'. The limit
set is a smooth circle.

3) A Kleinian group I'" which is not itself Fuchsian, but which contains
a Fuchsian subgroup I', of index two is said to be an extended Fuchsian
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group. For details see Maskit [28]. The limit sets A(I'y) and A(I') are equal,
and any yeI' — I', swaps the two components of . Such an element vy
also gives rise to a fixed-point-free, orientation reversing involution o of §
(compare 2), and one deduces from this that M = H3/T is a nontrivial
R-bundle over S/c. Remark that 8M = S.

A standard way to get more interesting 3-manifolds is through the
Klein-Maskit combination theorems (Maskit [27], Morgan [29]). We shall
explain how the simplest of these relates to the 4-manifolds involved.
Let I'y and T'; be geometrically finite groups without cusps and M; = H>/T;.
Every pair of points x; € M ; has neighbourhoods K; in M; isometric to a
hyperbolic half space i.e. to a component of H> — H? The H; = 3K; — 8M;
are embedded in M; and 8H? n M; = H? n 8M, are circles which bound
discs in 6]\7Ij. Define M = M, # M, to be Mo\K, v, M \K,, where p is
an isometry 8K, — 8K ;. The metric structure of M = M, # M, depends
on p, the choice of x; and the choice of the half spaces K;. M is called a
boundary connected sum of My and M, .

The first combination theorem expresses the fact that M = H3/T" with
I a Kleinian group which is isomorphic to the free product of I'y and
I'y. In PSL(2,C) the.group I' is generated by I'y, and gI';g~! for a
suitable g € PSL(2, C). It is easy to verify this.

Reverting to-the 4-manifolds, we see that we are identifying, by S*-equi-
variant conformal maps, balls B; around the points x; in the fixed surfaces.
Thus X equals X, # X, with # now denoting a conformal connected
sum. Summarizing we get:

PROPOSITION 2.4.  If I is the Kleinian group corresponding to a boundary
connected sum of H>/Ty and H3/U; then T is a Kleinian group such
that Xy is the S'-equivariant conformal connected sum of Xr, and Xr,
at points in the fixed surfaces.

Example 2.5. A classical Schottky group T of genus g is a free product
of g cyclic groups (compare example 2.3 (1)), formed as in the gluing
construction described before proposition 2.4. The 3-manifold M. is a handle-
body of genus g, and by proposition 2.4, Xr equals the connected sum
(S®x SY*9. In fact if T is any geometrically finite free Kleinian group without
cusps, then H/T" is a handlebody; this follows from standard results in

3-manifold topology (see Hempel [17]). We shall refer to such free groups as
Schottky groups.
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§ 3. CLASSIFICATION OF I' witH dimgA(l) < 1

In the previous section we constructed a compact, oriented, conformally
flat 4-manifold X starting from a suitable (see §2) hyperbolic 3-manifold.
By Schoen’s solution of the Yamabe problem [33] there is a metric in the
conformal class of X, for which the scalar curvature is a constant. The
sign of this constant —, O or + is called the type of X. A lot is known
about X of non-negative type, and we shall classify 3-manifolds M which
give rise to X of non-negative type.

In a different direction Schoen and Yau [34] proved that if X is
the quotient of S* — A by a discrete group of conformal transformations,
then X is of type +, 0, — if and only if the Hausdorff dimension of A satisfies
that dimy A — 1 is negative, zero, positive respectively. Hence our classifi-
cation is that of M for which dimyz A < 1. The classification for
dimy; A = 1 seems to be new, for < 1 the result was known.

Up to now, the only Kleinian groups to have been classified are the
so called function groups, those Kleinian groups which leave a component
of Q = S§? — A invariant. This has been done by Maskit. A special case
of this, which we shall use repeatedly below, occurs when Q is connected.
In this case the Kleinian group is Schottky (see example 2.5).

THEOREM 3.1.

a) If the type of X is + then M is a handlebody equal to H?/T
with I" a Schottky group.

b) If the type of X is O then one of the following holds :

1) M equals R x S = H>/T with T Fuchsian and S a compact
surface.

2) M equals H?/T" with T extended Fuchsian (see example 2.3 (3)).
3) M is a handlebody as in a).

Proof. a) R > 0 implies dimyA < 1, see the proof of proposition 3.3
of Schoen and Yau [34]. This implies that (I') is connected, because a set
of Hausdorff dimension smaller than 1 cannot disconnect S?. By Maskit’s
classification theorems (see Maskit [27]) it follows that I'" is Schottky.

b) First assume H*X,R) # 0 and give X a metric of zero scalar
curvature in the conformal class. From proposition 2.2 we see that the
intersection form is indefinite, so there i1s a self-dual harmonic 2-form ®
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on X. A Weitzenbock formula asserts that on 2-forms (d +d*)* = V*V with V
the total covariant derivative. It follows that o is covariantly constant, and a
multiple of ® serves as Kéhler form for an integrable complex structure
on X: compare LeBrun [24]. LeBrun proceeds to classify these as (1)
a K3 surface, (2) a four dimensional torus modulo a finite group and (3)
a flat CP! bundle with the local product metric, over a Riemann surface §
which carries a metric of curvature — 1. From proposition 2.2 we see that
only (3) is possible in our case because (1) has the wrong Euler characteristic,
and (2) with Euler characteristic 0 should have had H,(X;R) = 0.

The Kéhler form of X is the unique self-dual harmonic 2-form on X.
This is preserved by the conformal S*-action, thus the action is a holomorphic
action on X. As a result the vector field v induced by the S!-action on X
is holomorphic. The fibration n: X — CP! helps us further: we get a map
mye: TX —» n*TS and n,v is a section of w*TS. Such a section is constant
on fibres, so it is a pull-back of a section of T'S. The only holomorphic
section of T'S is 0; so v 1s a vertical vector field.

From theorem 2.1 we see that zeroes of v must be simple, hence two
per fibre. One of these is a sink, the other a source of i-v so we get
two sections S — X. This proves that X is the projectivization of a direct
sum of holomorphic line bundles, say X = P(L,®L,). The next step is to
remember that the circle bundle X — [P(L,)UP(L,)] over H*/T" may have no
monodromy. Infinitesimally this implies that L, ® L¥ is a trivial line bundle.
So X = S x CP! and consequently I must be Fuchsian.

Next we come to the case H*X,R) = 0. If S> — A has only one
component then we can apply Maskits classification theorem as in a), and
conclude that I' is Schottky; therefore we shall concentrate on the case
that Q has at least two components.

If Q, is one of these components then the stabilizer 'y = I' of Q,
is a geometrically finite Kleinian group, and has Q, as a component, see
Marden [26] corollary 6.5 (it should be remarked that subgroups are not
automatically geometrically finite). As S* — Q, is T'-invariant and has
non-empty interior, it follows that H*/T';, must have at least two ends. By
formula 2.5 and the fact that dimzA(Ty) < dimzA(I) < 1, the above implies
that I'y is Fuchsian. Thus every component of Q is a round disc.

Before we proceed let us briefly recall what effect a conformal rescaling
of the metric has on the scalar curvature. If on the 4-manifold X one has

1 1
g; = u*-g, then 6-u3 ‘R(g,) = (d*du+g R(go)u), where d* is taken with

respect to go. Since here metrics of zero scalar curvature are involved, this
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equation loses its nonlinear character. An immediate consequence is that
metrics of zero scalar curvature are unique up to constants multiples and
hence S'-invariant.

We have the hyperbolic covering H*/T', — H>/T", and on the 4-manifolds
corresponding to each of these there exists an Sl-invariant metric of zero
scalar curvature. Denote these by g, and g, and denote the hyper-
bolic metric on the 3-manifolds by g,. Then we have positive functions
uo: H3/Ty » R.yand u: H3/T - R, ,suchthatg, = u2-g,andg = u?-g,.
By the above u, and u are in the kernel of (d*d—1) on H?3/T, and
H?/T respectively (here d* is w.r.t. the hyperbolic metric).

Results of Sullivan [36] imply that positive solutions of d*d — 1 on
H?/T, are unique (up to positive scalar factors) as dimzA(I",) = 1. Therefore
the pullback of u equals u,, and hence the cover X, — (S;US,) - Xr — S,
is an isometry (S; are the fixed surfaces). The map can readily be extended
to an isometry X — S, - Xr and then extends to a double cover
X, = Xr. It follows that I" is extended Fuchsian as claimed. |

0

Reformulating in terms of Kleinian groups gives:

COROLLARY 3.2. Let T' be a geometrically finite Kleinian group without
cusps. If dimgA(I) < 1, then T is Schottky. If dimyzA(I') = 1 then T
is Schottky, Fuchsian or extended Fuchsian.

Proof. We shall see in section 7 that dimgA(I') < 1 implies that the type
of X 1s +, which is essentially an old observation due to Poincaré.
Together with the results of Schoen and Yau mentioned in the proof above,
the corollary is now obvious. O]

Remark. 1) Existence of Schottky groups with limit set of any dimension
smaller than 2 has been proved (Thurston [37]).

2) In Schoen & Yau [38] and Gromov & Lawson [15] the conclusion
is drawn that for so-called classical Schottky groups I' the manifold X
admits a metric of positive constant scalar curvature.

4) R. Bowen [9] has proved that any quasifuchsian group with
dimyzA = 1 is Fuchsian. Of course this is a special case of theorem 3.1.

It will be interesting to see if further developments in the theory of
compact, 4-dimensional, conformally flat manifolds are going to have similar
applications to Kleinian groups. On the other hand it seems likely that a
purely 3-dimensional proof of theorem 3.1 could be found as well. The crucial
element seems to be to exploit the existence of a harmonic two form, in
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the way Lebrun did. LeBrun arrives at his flat CP! bundle through a
foliation argument which presumably can be mimicked in the 3-manifold.

§4. HODGE THEORY FOR HYPERBOLIC 3-MANIFOLDS

Apart from the topological and geometrical applications which we
discussed in § 3, our Kaluza-Klein approach also has some more analytical
applications.

Recall that the Hodge-star #: Q"(Y) — Q(Y), on a 2n-dimensional oriented
Riemannian manifold Y, depends only on the conformal structure underlying
the metric. This has two consequences:

1) The L*norm |o|?> =0 A *o, of 0eQ'(Y), is conformally
invariant.

2) The harmonic n-forms, i.e. the ® € Q*(Y) s.t. do = d*o = 0, depend
only on the conformal structure of Y.

Of course conformal rescaling lies at the heart of our construction
in § 2, and we shall now show how the above applies to this situation. Let X
be the conformal compactification of M x S' as in § 2. Harmonic 2-forms
on X are automatically S’-invariant because they are in one-one cor-
respondence with the elements of H*X ;R)(=H*M ;R) @ H(M, 3M ; R),
see §2). By restriction to the open subset M x S' = X and a conformal
rescaling of the metric on M x S, 2) above implies that we get Sl-invariant
harmonic 2-forms on M x S! with respect to the product metric.

An S'-invariant form can be written as ® = p*a + p*B A dO, with
ae Q*(M), Be QM) and p: M x S'! - M the projection. A short com-
putation shows that such S'-invariant forms ® are harmonic iff o and B
are harmonic on M. If © is a harmonic 2-form on M x S! arising from
a form on X then it follows from proposition 2.2 that o e Q*M) and
BeQ'(M) are harmonic representatives for the class e H*(M;R)
® H'(M,dM ;R). The forms o and B have finite L?>-norm on M by 1)
above.

Conversely any S'-invariant, harmonic 2-form @ on M x S® with finite
L*-norm arises in this way. By 1) above one can always consider @ to be
an L*-form o on X because U S; = X\M x S* has measure 0. Applying
the first order elliptic operator d @ d* to w gives a distributional form in
L% (A*(X)) of distributional order < 1, which has support in the co-
dimension 2 manifold U;S; = X. The following lemma shows that this



288 P. J. BRAAM

implies that (dPd*)o = 0, which proves that ® is a smooth harmonic
form on X, as we claimed.

LEMMA 4.1. Let p be a distribution of order <1 in L%, (R". If
supp i is contained in R"™? then p = 0.

Proof. Without loss of generality assume that p is compactly supported.
The structure theorem for distributions carried by submanifolds (see Hor-
mander [21] theorem 2.3.5) asserts that p is a finite linear combination
of distributions v of the form <v, f> = <, Ogn-2-D%- f>, where nis a
compactly supported distribution on R"™ 2, 8g.-- is restriction to R"~? and
D* is a k-th derivative (0<k<1) in a direction n normal to R*2,

The Fourier transform [i(u, x, y) is a smooth function on R*" 2@ R @ R
of the form fy(u) + fi(w)+x + fo(u)+y. It is easy to see from this that the
L2 ,-norm cannot be finite, unless p = 0. ]

Denote by #"/(M) the vectorspace of harmonic (i.e. closed and coclosed)
i-forms on M with finite L*-norm. Summarizing the above we have proved:

THEOREM 4.2. The natural maps A (M) - HY (M, 8M ;R) and H"*(M)
— H?*(M ;R) are isomorphisms. =

On the universal cover, Poisson transformation gives a one-one cor-
respondence between closed and co-closed 1-forms on H?® and exact one
forms with hyperfunction coefficients on 8H?>, and this is what we shall
exploit next. If the hyperfunction one form is continuous then it is the
boundary value of the one form on H?> in the classical sense, this is
special for hyperbolic space. Thus in this case Poisson transformation is
solving a Dirichlet boundary value problem on (H?® 8H?®). The Poisson
transform 2(¢p) of a continuous function ¢ on SH?> is defined as (see
e.g. Gaillard [13]):

P($) (h) = [, P(h,b)- &(b)  with  P(h,b) = n™ '(hs/|h—b|*)*db,Adb,

where h = (hy, h,,h;) e R3 = H? hy > 0 and b = (b,, b,,0) e R? = §H>.
For exact one-forms o = dd we define P(a) = dP(d). As #(d) is harmonic,
P(a) is closed and co-closed. Using this, we can identify our L* cohomology
as follows:

THEOREM 4.3. Poisson transformation induces an isomorphism from I'-
invariant closed one-forms with hyperfunction coefficients on 8H> with support
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in the limit set to closed and co-closed one forms on H>/T" with finite
L? norm. Such hyperfunction one-forms are one-currents.

Proof. An L? harmonic I1-form on M lifts to an invariant 1-form ®
on H3. From Gaillard [13] we know that ® is the Poisson transform of
a unique closed l-form o on S§? = 8H> with hyperfunction coefficients.
From theorem 4.2 it follows that ® is bounded on a fundamental domain,
so it is of slow growth and therefore o is a current. Now write
o = dd,» = d for a distribution ¢ and a function V. It follows that
s is the Poisson transform of ¢ (after adding a constant). From theorem 4.2
it follows that the one form ® extends smoothly to a one form on
(H3U8H?) — A, zero on the boundary 6H?> — A. This implies that { is
smooth on (H3*US8H?®) — A. In Schlichtkrull [32], chapter 4, it is proved
that under these conditions | converges uniformly to ¢. But then ¢ must
be constant on components of 8H® — A and therefore the support of o
is contained in A.

Conversely let o be a closed 1-form with hyperfunction coeflicients in
S? with support in A, and let @ be its Poisson transform. We shall
prove that o, which is automatically closed and co-closed, has finite L?
norm. As above let ® = d{ and o = do, then ¢ is constant on components
of 8H*> — A. Apart from the boundary value ¢ there is another “boundary
value” ¢’, just as in the classical case there is the von Neumann boundary
value problem next to the Dirichlet boundary value problem. In further
analogy with the classical case the global boundary value ¢’ can be obtained
from ¢ by applying a pseudo-differential operator on S? to it, which has a
real analytic integral kernel, see Schiffmann [31]. So, ¢ and ¢’ are real
analytic in 8H> — A.

Oshima [30] theorem 5.3 shows then that locally in 8H> — A we have:

V(hy, by, hs) = cy(hy, hy, hs) + co(hy, by, hs) - h% - q(log h3),

with (hy, h,, h3) upper half space coordinates, g a polynomial in one
variable and cy(h;, h,,0) = &(hy, hy), c,(hy, by, 0) = &'(hy, h,). From this it
follows that ® has an expansion locally bounded by cst - h; - g(log hs).
Recall that a fundamental domain for the I'-action on H?® intersects
8H? in a compact fundamental domain for the I'-action in SH3 — A. This

together with our estimate implies readily that the L? norm of o restricted
to a fundamental domain is finite. N

A few remarks are in order. First of all it should be possible to give
an effective bound on the distributional order of the currents o on S2,
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and also if o = d¢ it should be possible to determine if the function ¢
(constant on components of 8H>—A) is locally integrable. Also it should be
noted that wAd9 is a solution on X of a p.d.e with real analytic coefficients,
1.e. it is real analytic. This shows inmedeately that ® has an expansion as
in the proof of theorem 4.3, without logaritmic terms.

Next we can use the above to define a simple invariant of the hyperbolic
structure on M. The Hodge star of the hyperbolic 3-manifold M gives an
isomorphism #*5: 4 (M) - A *M). Both #}(M) and #*(M) contain an
integral lattice of maximal rank coming from integral cohomology. These
lattices do not generally coincide under *5; in fact their intersection is empty
unless the 4-manifold carries a self-dual harmonic form which represents an
integral cohomology class. The relative position of the two lattices in
H?(M ; R) is described by :

4.1 M) e GL(H*M ; R))/GL(H*(M ; Z)QZ) ,

which is an invariant of the hyperbolic structure of M. Similar invariants
are very popular in algebraic geometry. There discrete lattices in a complex
vector space give rise to invariants associated to the complex structure of
manifolds.

We proceed to sketch how the above theory relating solutions of
elliptic p.de. on M to invariant solutions on X generalizes. Suppose
D:T(E) - I'(F) is a conformally invariant first order (possibly over-
determined) elliptic operator acting on sections of the vector bundle E
over X. This class of operators was studied in detail by Hitchin [18],
and comprises, among others, Dirac and twistor operators on X and the
operator d + d* on 2-forms which we studied above. Again restriction of
Sl-invariant solutions on X to M x S! gives solutions to a closely related
geometric p.d.e. on M.

Conversely we can start with a solution on M and require that it
has a finite L?>-norm on X\(US;). In general this is not the same as
having a finite L*>-norm on M, but it is the same as having a finite
weighted L?-norm on M. The weighting function is a suitable power of
the function on M which conformally rescales the hyperbolic metric on
M to a metric on X. Such a function is determined up to multiplication
by functions ¢: M — R, which are bounded above and below. The exact
value of the power needed is an inhomogeneous linear function of the
conformal weight of E. The extension over the fixed surfaces S; goes now
as in lemma 4.1. We shall not make use of this in the sequel and
therefore leave the details to the reader.
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Remarks. 1) It would be interesting to see what kind of harmonic
representatives for classes in H(M ; R) can be found.

2) Theorem 4.2 generalizes to identify elements of H’(M, 8M ;R) with
L? harmonic forms for any oriented n-dimensional Riemannian manifold M
for which a conformal compactification of M x S* exists, for all k, provided
j < n/2.

§ 5. MONOPOLES AND INSTANTONS

Our goal is now to exploit the compactification X of M x S' (see §2)
to get monopoles on M from S'-invariant instantons on X. We shall also
relate the instanton number on X to various topological invariants of the
monopoles on M. General background for this section can be found in
Freed-Uhlenbeck [12] and Jaffe-Taubes [22]. More specifically our approach
here is very similar to the one taken in Atiyah [2].

Let P be a principal SU(2)-bundle over X, with c,(P) = k > 0. Recall
that X comes naturally with a conformal structure. This enables us to talk
about instantons or anti-self-dual connections A on P. These are defined to
be the solutions of the anti-self-duality equation:

5.1 F4 = — %, F* (%, the Hodge star on A*(X)).

Here F4 is the curvature of 4, a section of A(X) ® gp with gp = P X 4a5uU(2).
The instantons are the absolute minima of the Yang-Mills functional:

5.2 YM(A) = (16n%) "' [ <F4 A *F4>

where <o, > = — 2-tr(af) is an invariant inner product on su(2). For
an instanton YM(A) = k.

Next assume that the double cover S! of S! acts on P by bundle
automorphisms, covering the action on X ; the double cover will be needed
in order to include the spin bundles of X. Our interest will now lie in

S-invariant instantons on P. To relate these to objects on M introduce
the map:

JiM - X:m—1i(m 1) (compare 2.2),

which is a diffeor~norphism onto its image. Let v be the vectorfield on P
induced by the S'-action. If we interprete an S'-invariant connection A
as a l-form on P, then define the Higgs-field ® to be the su(2)-valued
function j*A(3v) on j*P. It is easy to see that @ is a section of j*gp.
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Further A; = j*A defines a connection on the bundle j*P over M. A little
computation shows that the S!-invariant connection A is anti-self-dual iff
(A5, @) satisfy the so called Bogomol'nyi equation on M :

5.3 | d4® = — % 4.

As 5.3 is the standard equation describing magnetic monopoles on three
dimensional manifolds, this leads to the definition.

Definition 5.1. A monopole on P is an S'-invariant instanton on P.

Normally one defines a monopole by imposing certain asymptotic con-
ditions rather than requiring it to extend over a compact manifold. In
Braam [10] it is explained that results of the Sibners imply that this
amounts to the same. We shall see below that the boundary data are the
same. '

If GA(P) denotes the group of S-invariant gauge transformations on P,
then GA(P) leaves the set of monopoles invariant. Just as for instantons
one can therefore define a monopole moduli space, equal to:

5.4 {solutions of 5.3}/GA(P)

In Braam [10] is shown that under some assumptions these moduli spaces
are non-empty finite dimensional manifolds.

We shall now return to our S l_equivariant bundle P and relate topological
invariants of the action to asymptotic invariants of (45, ®) on M. Restricted
to one of the fixed surfaces S i St acts by gauge transformations on P. The
fibres of E = P X gy, C* over S; decompose into eigenspaces for the St
action. Denote by m; e Z , the S 1_weight which is non-negative.

If m; > O then:

5.5 Es, =L, ®L*

where L; is the complex line bundle in E of weight m; and L7} that
of weight — m;; because ¢,(E;s;) = 0, L} is also the dual of L;. In order
to define the first Chern classes of L; it is convenient to have an orientation
of §;. Recall that X is oriented and that a neighbourhood of §; in X
looks like S; x R? The R? is oriented by the S*-action, and this induces an
orientation of S;. Now write ¢,(L;) = — k;- x; with k; € Z and x; the positive
generator of H*(S;;Z). If m; = 0 then Eg, is trivial as an S~1-equivariant
vector bundle. We shall leave k; undefined in this case.

There is one important constraint on the m;. This becomes clear by
remarking that — 1€ St acts as a gauge transformation on all of E, i.e. as
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+ 1 or as — 1. This implies that either all m; are even or they are all odd.
In Braam [10] we have shown that any set of invariants (m;, k;) satisfying
this constraint arises from a suitable S'-equivariant bundle, and that the
Sl.isomorphism class is determined by (m;, k;).

Definition 5.2. The moduli space of monopoles on a principal SU(2)-
bundle P with invariants (m;, k;) will be denoted by .#(m;, k;).
Having defined the relevant invariants of P, the question now arises

what they amount to in terms of asymptotic conditions for a pair (45, ®)
on M. The vector field v on P turns vertical over S;. This shows ‘that:

5.6 |®(y)| > m; if y—S§; <M.

This is the Prasad-Sommerfeld boundary condition used in physics and the
numbers m; are called the masses of the monopole.

The solutions of the Bogomol’nyi equation 5.3 are minima of the energy
functional :

5.7 E(4;,®) = 8m) " f | F2 1% +d,@]2dVs.

If the pair (45, ®) arises frbm an invariant connection A on P then
E(4,, ®) = YM(A). If we assume that (45, @) satisfies 5.4, then:

IdAS(D[ZdVS == lFA3l2dV3 = <FA3 /\ dA3®> = d<FA3'®> N
by the Bianchi identity. It follows that:
E(A5,®) = — ZZJ.(STC)_1 'jsj <F4.0> .

The minus sign appears because the boundary orientation of S; does not
agree with orientation we have given it above. A moments reflection shows

that 2 - (8m)~ ! - 5, <F*.®> = — m;-k;. Putting things together we get:

5.7 Sm, - k; = E(4;,®) = YM(A) = k.

This is essentially the localization formula in equivariant cohomology applied
to the equivariant c,(P), see Atiyah [2].

Exactly what the physical symmetry breaking would lead one to expect
does indeed happen: far away in M, that is near an §; with m; # O,
the connection almost becomes a U(l)-connection on L;, the bundle of
eigenvectors of @ of eigenvalue 5 - m;. The charges k; appear as first Chern
classes of these line bundles on the boundary surfaces. This is of course
nothing but the quantized charge of a U(l)-monopole, a so called Dirac
monopole, on L;. Dirac monopoles have singularities, but the genuine non-
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Abelian character of SU(2)-monopoles in the core of M allows for non-singular
solutions.

From 5.7 we see that ) m;-k; > 0 is necessary for the existence of
monopoles, however this is by no means sufficient as we shall see below
(also compare Braam [10]).

We shall end this section by giving some simple examples of monopoles.

Examples 5.3. 1) Monopoles with all m; = 0. For these monopoles
YM(A) = 0, so we are dealing with flat connections. The Higgs field @
vanishes, this follows from the Bogomol'nyi equation. It is not hard to see
that the moduli space #(0,0) equals the space of all representations
n,(X) - SU(2) modulo conjugacy: one assign to a flat connection its
holonomy representation. This space can be very non-trivial ; e.g. if M = H?3/
Fuchsian group = § x R, with S a surface, then .#Z(0,0) is the space of
representations of m,(S) » SU(2) modulo conjugacy. By the theorem of
Narasimham-Seshadri this is the same as the moduli space of semi-stable
SL(2, C)-bundles on S, for any complex structure on S. The topology of this
(0, 0) was investigated by Atiyah-Bott [4].

2) Next keep k; = 0 but take at least one m; to be nonzero. The
connections are still flat so ® is covariantly constant. This shows that
M(m;, 0) = @ unless all m; are equal. Further

M(m, 0) = Repr (n,(M), S*) = Repr (H,(M ; Z), S*)
= Hy(X;Z)r x {H(X;R)/H (X Z)}

3) For M = H?® all monopoles were determined by Atiyah [2]. The
moduli space #(m, k) equals {d:S* - S?; ¢ rational, degree ¢ = k,
®(c0) = 0}, modulo multiplication by complex scalars of length 1. The
monopole associated to the rational function Z,- exp (i) » A;/(z—a;) with
AieR.y,a;€C, represents k lumps, centered at approximately (a;, ;)
e R3 = H3, with relative phase factors exp (i(ct;, — o;,)).

4) Monopoles arising from Riemannian curvature. If X is a oriented
Riemannian 4-manifold then one can write the curvature tensor R: A% — A?
. [W+ + (R/3) B

B* W_ + (Ry/3)
@ A2, in which B equals the Ricci curvature and W, the Weyl tensor.

If X is a conformally flat spin manifold with a metric of zero scalar curvature

:| relative to the decomposition A? = A2

B
:|. It follows that the connection

then this curvature tensor equals
1 [B* 0
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on the spin bundle S, is anti-self-dual. Recall (see § 3) that for I" Fuchsian,
extended Fuchsian or a suitable Schottky group X admits such a metric.
The connection on S, is a monopole because the metrics are S'-invariant.
The mass(es) is (are) 1 by proposition 2.2, and the charges k; equal g — 1,
where g is the genus of the fixed surface(s). Choosing a different spin
structure amounts to tensoring the bundle with a 2-torsion element in
Repr (n,(M), S'), compare 2).

In section 7 we shall come to grips with explicit formulae for nontrivial
monopoles on certain handlebodies. In Braam-Hurtubise [11] the moduli
spaces of monopoles on a solid torus are investigated in considerable detail.
A general existence theory for monopoles on hyperbolic manifolds has been
developed in Braam [10].

§ 6. TWISTOR SPACES

To a conformally flat oriented 4-manifold X there are naturally associated
two complex manifolds Z, and Z_, the twistor spaces of X. Applying our
construction of §2 we thus get twistor spaces for hyperbolic 3-manifolds.
It will be shown here that these carry a lot of geometric information
associated to the 3-manifold M, such as the complete geodesic flow. Also they
allow for a description of monopoles through holomorphic geometry. For the
rest of this section let X be the conformal compactification of M x S2,
with M a hyperbolic 3-manifold H3*/T as in §2. We shall state those
properties of Z. that we will need, and refer to Atiyah [1] and Atiyah-
Hitchin-Singer [5] for proofs and more details. The general line of thought
in this section is very similar to that of Hitchin [20] and Atiyah [2].

If §,(S_) is the spin bundle of positive (negative) chirality on X,
then Z ,(Z_) can be realised as the CP!-bundles over X :

P(S.)—> X (P(S.)—X),

where P( ) denotes projectivization of vectorbundles. A remarkable fact is
that Z, and Z_ are complex manifolds with a complex structure encoded in
the conformal structure of X. However, the twistor spaces are only Kéhler
if X =S8%* or X = CP? which in our case results in T — {e} (see
Hitchin [197]). There is an orientation reversing isometry of X arising from
conjugation of the circles. This interchanges the two spin bundles and makes
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Z . holomorphically equivalent to Z _ . Henceforth we shall only consider Z .
and denote it by Z.

Z carries an anti-holomorphic involution :
c:Z—-272, ot=1.

This involution is a bundle map, inducing the identity on the base X,
and is equal to the antipodal map upon restriction to the fibres. The
complex structure on Z is such that (orientation preserving) conformal
transformations on X lift to holomorphic transformations of Z. So our
St-action on X lifts to an action on Z by holomorphic transformations
and complexifies to a holomorphic C*-action on Z. We shall show that
this C*-action is essentially the geodesic flow in H>/T" (as one would expect
from Hitchin [20]).

The naturality with respect to conformal transformations has one further
important application.

Recall (see Atiyah [1]) that the twistor space of S* is CP® with
projection and real structure:

n:CP? - §* = HP':[z4,2,,25,23] = [20+21°j, 23+ 23]
o: CP? - CP?: (20, 21,22, 23] = [—21, 29, — 23, 23]
As X = (S*—A)/T it follows that the twistor space of X is the quotient:
Z = [CPP—n~ Y(A)JT .

To study Z it will be useful to know how C* and PSL(2, C) act on CP>.
The C* action is described by [zq, z{, 25, 23] = [29, A" 21, 25, A+ 23], and

a 0 ¢c O
_ a ¢ 0 a 0 ¢

the right PSL(2, C)-action by mapping [ b d] tol » 0 4 o |EPSL4C)
0 b 0d

which acts naturally on CP3, compare 2.3. Clearly the S'-action fixes
precisely two lines in CP> namely:

6.1 Pi}- = {[Zo, 0, Zy, O] € CP3} and
P; = {[0,z,,0,z;3] € CP?}
These lines are also invariant under the hyperbolic isometries. The

projections to the fixed point set S? — S* are the orientation pre-
serving map P — S%:[z,, z,] = [20, z,] and the orientation reversing map
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P[ — S?:[z;,25] — [z, 23] respectively. Here we have used homogeneous
quaternionic coordinates on S* = HP'. The real structure maps P} toP]
and vice versa.

Non-trivial C*-orbits in CP? are in one-one correspondence with a pair
of begin- and end-points (z, w)e P{ x Py . Upon projecting the orbit ¢
corresponding to (z, w) down to H>:

O = CP? - n(0) = §* = H?> x §* - g(0) = H’

one easily sees that g(0) is an oriented geodesic in H* from ze §* = 8H>
to we S2 The constant geodesics at infinity are included. Further for
pe® < CP? and A e C* we have that the distance of n(p) and m(Ap) on
g(0) equals log|A|. As the C*-action commutes with the I'-action, this
shows that the C*-action is essentially geodesic flow in M. More precisely
consider a copy of M = i(M x{1}) in X. Then Z, is the projectivized
spin bundle of M which is canonically isomorphic to the unit tangent
sphere bundle of M. Further the action of R, , = C* preserves Z),, and is
exactly the geodesic flow.

It is now possible to describe Z in detail. First of all the fixed points
of the C*-action on Z are surfaces S;", S; , which project down to S; = X.
The surfaces S/, S; equal the components of [P —A]/T" and [P; —A]/T
respectively. The real structure maps S to S; .

The nontrivial C*-orbits in Z come in three types. Good orbits emanate
from a plus surface, say S;°, and end on a minus surface, say S, . The
closure of one of these orbits in Z is a CP'. Note that these orbits are
not determined by their two “endpoints”. This corresponds precisely to the
fact that two geodesics in M may have the same two endpoints, but in
between one of them may run through different loops than the other.
Denote by Q; (Q;) the pre-image in P{ (P1) of S} (S;) under the quotient
map. From the above we get the following

PropoSITION 6.1. The good orbits from S; to S; are in one-one
correspondence with oriented geodesics in M = H?/T', which go from S ;
to Sy. These have the complex analytic parameter space [Q; xQ, /T,
which is a holomorphic Q,  bundle over S; or equivalently an Qj
bundle over S, .

Considering all good orbits emanating from S; and ending on some

S« , one gets that these are holomorphically parametrized by a U Q
k
= P — A bundle over S} . Indeed, all orbits emanating from S 7 have a
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nice algebraic parameter space, which is equal to the projectivized holomorphic
normal bundle P(N;) of S; in Z. This is a CP'-bundle over S; . The
bad orbits correspond to geodesics in M which, in the universal cover,
start in Q; and end in A. Of course similar statements hold concerning
arriving geodesics and the projectivized normal bundle of S; . Concerning
the normal bundles we have the following

PROPOSITION 6.2. There are injective, open, locally biholomorphic maps
Vi:NF—>Z, where N is the holomorphic normal bundle of S}
in Z. The C*-multiplication on the bundle N is intertwined with the
C*-action on Z by Vi, whereas ; intertwines multiplication by the
inverse with the C*-action on Z. The projectivized normal bundles
P(N/)(P(N})) are an algebraic parameter space for all geodesics in M
going out from (arriving at) S;.

Proof. This is easy for the normal bundles of P and P; in CP>.
Because the I' action is linear and commutes with the C*-action the result
also holds in Z. ]

Remark 6.3. 1) The relation of the normal bundles with Eichler’s
modules. If #~ — CP! is the positive Hopf bundle, then H(CP!, #™) = II,
is an SL(2, C)-module, called an Eichler module, see Bers [7]. Hence after
choice of a spin structure I' - SL(2, C) a I'-module (compare the discussion
after proposition 2.2). A short computation shows that the normal bundle
of S} in Z is isomorphic to:

NJ?}— = (Qj+ ><1"1:11) ® V+,j>
where V', ; is the positive spin bundle of S ;.

2) In general for complex submanifolds V' < W there are obstructions
for locally embedding the normal bundle in a holomorphic way, see
Kodaira [23].

3) It may be possible to derive the geometry of the ends of the
hyperbolic manifold M from the holomorphic structure of a normal bundle
of a fixed surface. It would be interesting to have a formula for the
metric on an end, giving the end as a foliation by surfaces such that the
foliation is invariant under geodesic flow.

Finally there are very bad orbits, corresponding to geodesics going from
A to A in the universal cover. In M they keep spiralling around, and
never find and endpoint in either direction. For example closed geodesics
are among these, in fact points in non-trivial orbits have a non-trivial
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stabilizer iff the orbit corresponds to a closed geodesic. The C*-orbits in Z
corresponding to closed geodesics are compact holomorphically embedded
elliptic curves in Z. The set of very bad orbits is closed in Z, is disjoint
from the S;, and lies in the closure of the set of very good orbits. In
figure 2 we have sketched the orbit situation.

AN

N+

FIGURE 2.

The next objective of this section is to give a holomorphic description
of monopoles. The relation between twistor spaces and anti-self-dual con-
nections lies in the Atiyah-Ward correspondence (see Atiyah-Hitchin-Singer
[5], for the instanton case):

THEOREM 6.4. Let P - X bean §1-equivariant SU(2)-bundle, and A a
monopole on P. Put E = P X gy, C* Then m*A induces a C*-invariant
holomorphic structure on F = w*E such that:

1) F is trivial on the fibres of .

2) The natural antiholomorphic antilinear bundle map o:F — F*, covering
o on Z, induces an S'-invariant Hermitian metric on the vector spaces
HO(n™ Y(x), F).

3) A*F is holomorphically trivial.

Conversely a C*invariant holomorphic C*-bundle F over Z, with a real

structure o: F — F* satisfying 1, 2 and 3 arises from a unique monopole
on P-—> X. ]

Real structures on indecomposable holomorphic bundles F over twistor
space are unique. Hence all the information is encoded in the holomorphic
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structure. However, existence of real structures is not automatic. The gauge
equivalence relation for monopoles on P — X is the same as holomorphic
6*—equivariant equivalence, preserving real structures, for the holomorphic
bundles F on Z. '

Let A be a monopole on P — X, with all m; # 0 and even, for
simplicity. In this case we need not consider double coverings of groups
and we shall denote the weights of S' by p; = 3-m;. Denote by
F = ¥ X gy)C?) the holomorphic bundle over Z, with real structure o.
By theorem 6.4 the holomorphic structure on F is C*-invariant. An important
aspect of monopole geometry of R® and H? is to consider the quotient
bundle # = F/C* on Z/C* as far as this makes sense. On Z/C*, & will
be an extension of certain standard line bundles, and this has been put to
constructive use in the R® case, see Hitchin [20]. It will be shown that a
more complicated but essentially similar picture persists in our more general
case. As yet, the constructive power seems to be rather limited.

Restricting F to S; it splits holomorphically, since the C* action is fibre-
wise, with nonzero weights + p;:

6.2 F|Sj+ =L @ (L))*

Fis; = Ly @ (L;)*
Here L, has C*-weight p; and ¢,(L;) = — k;, as in §5. For L; we
have C*-weight — p; and cy(L;) = — k;. The real structure gives an

anti-linear isomorphism L; — L; .

PROPOSITION 6.5. On N[ < Z(N; =Z) there are line bundles K (K;),
extending the LI of 6.2 (which were defined on the zero sections S}
of NF), suchthat onthe N the bundle F is an extension:

0-K; - Fyr - (K )* -0
0—-K; —>F,Nj‘ - (K;)*->0
The real structure interchanges these two extensions.

Proof. Recall that sections of P(F) correspond to line sub-bundles of F.
We shall look at the C*-action on P(F) restricted to the fibres (N;),
with zeS; . Over (N;), we have two fixed points in P(F) namely
[(L7),] and [(L;)¥], lying in the fibre above 0 e (N;),. At f = [(L}),]
the weights of the infinitesimal C*-action on T P(F) are (+1, +1, —p;).
This means that most of the C*-orbits will actually flow to [(L;")¥],
compare figure 3.
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stable manifold

() x <

generic orbit

FIGURE 3.

By the stable manifold theorem with holomorphic parameter ze S|,
we get a C*-invariant, codim¢ 1, complex submanifold [L;] of P(F),
consisting of precisely those orbits that flow into L; . For the stable
manifold theorem see Hadamard [16]. On N; the situation is of course
similar. .

In the case of monopoles on H? these extensions extend as bundle maps
from N7 = CP? — P, to CP’ (also for N;) but in our more general
situations there can be obstructions to this.

The extensions of proposition 6.5 descend to the quotient P(N i), and we
proceed by identifying them there. Holomorphic line bundles on the ruled
surfaces are of the form:

p*L ® O(n)

where p: P(Nj) — S; is the projection, L a line bundle on S¥, and
O(n) the n-th power of the positive Hopf bundle on P(N ), which has

fibre (Cv)* at the point [v] € P(N ;). On the fibres of NI the structure
of the bundle follows from:

LemMmA 6.6. Let C* act on C* by scalar multiplication. A C*-
equivariant C*-bundle E — C* is equivariantly isomorphic to E, x C2
with E, the representation of C* on the fibre over 0e C2.

Proof (see Atiyah [2]). On C*\{0} a C*-equivariant bundle is the same
as a bundle on CP', ie. a sum of powers of the Hopf bundle. This
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establishes the given isomorphism on C?\{0}. By Hartog’s theorem it
extends to C2. ]

The point of the lemma is that it identifies K as the pull back of
; under the projection Ni — S¥, with C* acting on it by a character
of weight + p;,. Now one concludes readily that the extension on P(N ;)

reads:

63 O - g;’ — ‘__0/7' — ($J+)* — O Wlth
F =p*L7 ® 0p;) and & = [F|NJ-+\{0}]/C*-

Similarly on P(N ;") we get:

6.4 0% - F > (Z;)* >0 with
Z; =p*L; ® O(p;) and ZF = [F|NJ-_\{0}]/C*-

J

This results in:

THEOREM 6.7. The monopole A defines extensions of % on P(N;)
and P(N;) for j=1,.,N as in 6.3 and 64. These extensions are
interchanged by the real structure. ]

In the case of monopoles on H* these restrictions are essentially all the
data one obtains about the quotient bundles and the monopole is determined
by the extensions and the real structure: see Atiyah [2]. In our case the
intersection of N ;" with N; will generally have many components and we
get extra data in the form of a set of invariant holomorphic identifications:

65 gl.]. Ni+ M Nj— - Hom(FlNi+ 5 Fle_) s

Conjecture. Under general conditions on the hyperbolic structure on M
bundles F arising from irreducible monopoles are determined by the
extensions 6.3, 6.4 and the real structure on these. ' ]

One can almost certainly prove that if F, and F; are two holomorphic
bundles on Z such that upon restriction to w;(N;"UN/;) they become
isomorphic, then they are isomorphic on Z. In order to prove the conjecture
it remains to show that for irreducible monopoles no information is contained
in the g;;. Evidence for this conjecture comes from Thurston’s version of
Mostow’s theorem (see Morgan [29]). This theorem implies that the flat
PSL(2, C)-bundles encoding the holonomy of the hyperbolic structure are
determined by their restriction to the fixed surfaces, despite the fact that the
fundamental group of Z is not necessarily generated by that of the fixed
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surfaces. In fact one may hope to reverse this procedure: a proof of the
conjecture would be a good first step towards a proof of Mostow’s theorem.

It might be a good point to stress that although Z is not Kahler,
suddenly algebraic objects such as elements of Picard groups and ruled
surfaces have appeared. This makes algebraic geometry enter the picture,
perhaps somewhat unexpectedly.

Next we shall consider spectral curves, of which we shall obtain a whole
bunch instead of just a single one, as obtained in the case of R®> and H?
(see Hitchin [20] and Atiyah [2]). Just as in the R® and H?
case we should compare two extensions. On P(N ;NN ) we have:

6.6 0> % >F > (£H*>0 and

j
0% - F > (&L )*—>0
Definition 6.8. The spectral curve
Cik c PIN;ON;) = (Q xQ))/T  jk=1,.,n
1s the zero set of the canonical map
Li = (L)

arising from 6.6. ]

Hence for a manifold with N ends, we get N? spectral curves. However,
the real structure clearly interchanges C # with C,;, so effectively we are
left with (N?+ N)/2 spectral curves, N of which, namely the C;;, have to
satisfy reality constraints. The curves can be interpreted geometrically as
follows::

PROPOSITION 6.9. The following three are equivalent :
I) A C* orbit Oe(Qf xQp)T liesin Cy,.
2) The bundle F restricted to O =P, = Z is isomorphic to  O(p;+ py)

® O(—p;—pr). (For other good orbits it will be isomorphic to  O(p;—py.)
® O(—p;+pi)-)

3) The Hitchin equation (compare Hitchin [20]):

0s

3 + A1 s+ i@-s =0, s:9(0)—> C?

on the corresponding geodesic ¢(0) = H 3T has a bounded solution.
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Proof. To see the equivalence of 1) and 2) we first digress on bundles on
CP'. The result of lemma 6.6 also holds if one replaces C? by C; this
follows by wusing an arbitrary projection C?> — C and pulling back. Thus
E| trivializes in a C*-equivariant way as:

Ly ®([Lj)* on 0 — {0}
L; @(L;j)* on 00— {0}.

The C*-equivariant automorphisms of E_ ., are easily seen to be of the

0 ¢
situation is the same at infinity, and from this it follows that isomorphism
classes of C*-equivariant holomorphic bundles on CP! are given by the set
of two elements B\GL(2, C)/B. The exceptional case is that in which the
transition function maps L to L; , ie. O € Cy. Then F|5 equals O(p;+ py)
® O(—p;—px), otherwise it is isomorphic to O(p;—p,) @ O(p,—p;).

To prove the equivalence of 2) and 3), we first remark that Fig has a
bounded C*-invariant holomorphic nonzero section, iff Fz = O(p;+py)
@ O(—p;— px). This follows from the standard description of sections of line
bundles over CP! as homogeneous polynomials and from the fact that the
weights of the action are is p; at 0 and — p, at oo. The Hitchin equation
is nothing but the Cauchy-Riemann equation for invariant sections, see
Hitchin [20]. Therefore the proposition follows. O

a bz
form , and thus form a Borel subgroup of GL(2, C). The

Remark 6.10. 1) One expects that the spectral curves will generally not
be compact and more or less resemble a curve of infinite genus. This is
because on the universal cover H> we are dealing with a monopole of
infinite charge.

2) It should also be remarked that the complex manifolds (Q; x Q. )/T"
in which the spectral curves lie are far from nice generally. In the case of
cyclic groups they are a C*-bundle over a torus and for quasi-Fuchsian
groups they are disc bundles over a Riemann surface of genus > 2.
Generally they will be Q; bundles over S, and the fibre will have
infinitely many components; see § 2 where we discussed Kleinian groups.

As remarked in the introduction, it should be very interesting to find
constructions for monopole bundles on these twistor spaces. It seems however
that methods previously employed for CP? fail, mainly due to the fact
that the twistor spaces are not Kahler.
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§ 7. ATIYAH-WARD ANSATZES, SUMMING ‘T HOOFT SOLUTIONS
AND EISENSTEIN SERIES

In this section we shall derive some explicit formulae for monopoles on
handlebodies, using the complex geometry of their twistor spaces. A detailed
study of the moduli spaces of monopoles on a solid torus has been made in
Braam-Hurtubise [11].

From the description of Z as P(S.), it follows that on Z there exists
a tautological line bundle L, which upon restriction to the fibre over
x € X, equals the negative Hopf bundle on P(S, ). It turns out that L
is naturally holomorphic, and to tie in with the (CP3 S*) case we shall
denote the (—g)-th power of L by 0(qg).

If F > CP? is an instanton bundle on the twistor space of S* then
Atiyah-Ward ansatzes, that is an explicit formula for the instanton on S+,
arise from a suitable description of F as holomorphic bundle. Let s
be a section of F ® O(q) = F(q). Generically s will be nonzero away
from a complex curve C, = Z and give rise to an extension class
e;€ H(Z—C, O(—2q)). Elements of such sheaf cohomology groups cor-
respond to solutions ¢, of linear p.d.e. on open sets of S*: this is the
celebrated Penrose correspondence. Explicit formulas for the instanton, such
as those of 't Hooft, can be constructed in terms of this ¢,. Every
instanton on S* can theoretically be computed in this way. For background
see Atiyah [1].

We shall see that on our manifolds X = (S*—A)/T, for ' # {e}, the
situation is rather different, but that nevertheless in some cases explicit
constructions can be made again. As before attention will only be paid to
S'-invariant instantons, i.e. monopoles. In those cases which we treat in
detail, it will appear that we are essentially summing together a monopole,
much in the same way as automorphic forms are constructed by summing
kernels. It is however quite remarkable that “summing” of solutions is
possible for the non-linear anti-self-duality equations, and may be these
summation procedures are best thought of as a kind of Backlund trans-
formations.

Recall from § 2 and § 3, that X comes with a natural conformal structure,
and that X can be given a metric in the conformal class with constant
scalar curvature Ry. We proved that the majority of X’s give rise to

negative Ry. Assume a spin structure on X has been fixed, then the line
bundle 0(q) above is well defined.
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ProrosiTION 7.1. If Ry < 0, then no monopole on X arises from an
Atiyah-Ward construction, since H%(Z, F(g)) = 0 for all g e Z\{0}.

Proof. For q < 0 any section would vanish on the fibres =~ 1(x), and
hence be zero; this is independent of the sign of Ry. For ¢ > 0, we know
from Hitchin [18], that elements of H%(Z, F(q)) are in one-one corres-

pondence with solutions of the twistor equation on X with coefficients in

15,13 =0
D, = PV :T(SY(S,)QE) - [(S"1(S,)RS _QE),

with S? the g-th symmetric product, Z: A' ® S4S,) - S?71(S,) ® S_ the
projection, and A the anti-self-dual SU(2)-connection on E — X. For these
equations we have a vanishing theorem of Weizenbock type in the case of
negative scalar curvature, see Besse [8]. ]

Hence attention here needs only be paid to the Ry > O manifolds,
which were classified in theorem 3.1. But even here there is a very
fundamental difference between the case X = S% ie. [ = {e}, and the cases
of non-trivial T

On X = §% Z = CP? the dimensions of H%Z, 0)(g)) (and also of the
invariant part H%(Z, 0(q))° ") increase with ¢. Tracing through the (equivariant)
Riemann-Roch formula (as in Hitchin [19]), one learns that the increasing
character is due to the fact that for the fixed point sets S* = P,
S™ = P;{ = Z = CP> we have y(S*) > 0. For I # {e} these Euler charac-
teristics satisfy x(ST) < 0. This leads one to suspect that it may not always
be possible to find sections of F(g), which would be needed to obtain
Atiyah-Ward ansatzes in general.

After all these negative remarks, let us proceed to show that, at least
in some cases, the construction works satisfactorily. To simplify things even
further, we shall assume that X is a manifold with Ry > 0; by theorem 3.1,
X arises from a Schottky group. Consider on X the conformally invariant
Laplacian D, acting on densities of conformal weight 1, with values in
densities of weight 3, which equals

1
DO = d*d +6"Rx.

Since Ry > 0, we get ker D, = 0, and hence unique fundamental solutions ¢,
exist satisfying
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D0'¢x=6x XEX.

Through the twistor correspondence (see Atiyah [3], [1], and Hitchin [18])
¢, corresponds to a cohomology class:

0. € H(Z—n"(x), 0(—2)),

and hence ¢, gives rise to a vector bundle F on Z — n~'(x), which is an
extension:

0->0(-1)->F—->01)—-0.

In fact one can show (Atiyah [3]) that the bundle F extends to a bundle
F on Z, such that F(1) has a holomorphic section vanishing precisely
on n~ !(x). The maximum principle applied to D, ensures that ¢.(y) > O,
for all y € X, and this implies that F is trivial on the real lines © ™ *(x). Since
®, is real, F gets a real structure. Thus F is an instanton bundle.

To get a monopole rather than just an instanton we have to assume
x € S,, the fixed surface in X. The weight m; of a monopole constructed
in this way equals 1, because the Hopf bundle @(1) is of weight 1. The
charge also equals 1.

Obviously the process can be generalized by using a positive linear
combination of k fundamental solutions:

(P:ZXj(ij 7\'j>0> j=1..k,

which is called an ’t Hooft potential. If the x; lie in S; = X, then the
't Hooft potential will be invariant, and it follows that we have created a
monopole of mass 1 and charge k. All positive scalar multiples of ¢ give
the same instanton, so the number of parameters in the solutions is 3k — 1:
we have 2 for every x;€ S, and 1 for every A;. These solutions therefore
don’t give an open set in the 4k — - y(S) dimensional moduli space.

We proceed to identify these potentials ¢. In the course of this, explicit
formulas for the connection 4 will also be given. Besides, a slight generaliza-
tion of the Atiyah-Ward construction will emerge.

Pulling back ¢, to S* — A, under the quotient map, one gets a generalized
function ¢, on S* — A satisfying:

DO(pr = Z 67)}

yell

with y e $* — A mapping to x. Of course the next step is to try to reverse
this and to put:
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71 Gx =DV,
vell

where , is a fundamental solution on S* of D, at y. In the flat metric
on R* = §% fundamental solutions are equal to:

72 W) = @uly—rl) 2.

Since the flat metric is not I'-invariant, conformal weight factors will occur
in 7.1. It is easier to see what happens if one uses the I'-invariant metric
on H3 x S':

t™2dx2+dxi+dt?) + d0*  (xy,x,,t 00 e H® x S!

Under conformal rescaling, 7.2 transforms to the 6-independent summation
kernel of the Eisenstein series on H? (compare Mandouvalos [25]):

E(y, h) = t/[(x;—y1)*+(x;—y2)*+t*] yeR* <= S*, h = (x,x,,t) e H?

Summing, we get for 7.1:

7.3 Ex(y, h) = ). E(y, vh),

vel

which is the Eisenstein series for I', see Mandouvalos [25]. As settled by
Poincar¢ already, 7.3 is convergent if 6(I') < 1, where 6(I') is the Hausdorff
dimension of the limit set A(I') of I'. The groups I' for which this holds
are the cyclic groups and classical Schottky groups (with their defining
circles wide apart, compare Bers [7]). In passing by we note that 6(I') < 1
implies that X is of positive type because the Eisenstein series is a strictly

positive Green’s function for d*d + ¢ R, : the maximum principle implies

R, > 0.
To compute the gauge potentials, it is easiest to go back to the flat
metric on R*. The more general potentials there look like

k
7.4 $(h,0) = 3 Mg+ t™' - Erlxi, ),
i=1

and the formulas of ’t Hooft give for the connection (see Atiyah-Hitchin-
Singer [5])
A=) P, (—1/2dlogpAe;) ® ¢,e T(R*, ATRAY,

with e; an orthonormal, covariantly constant framing of T*R* and A% -
identified with su(2). To see what this looks like, assume that I" is cyclic,
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generated by |: 1} LeR.,. Then

A
Iy

o0 AT n}b i

with y,e R = §2 and reSY\A = R*\{0}.

So we see that for A » A, and 1 < |r|, | y|l <A, the second term
dominates strongly and the monopole will look much like a “grafted
S*-monopole”. On making A smaller, nearby nonlinear interaction makes the
monopole look more complicated.

Finally we discuss a modification of this construction which supplies a few
more solutions. Suppose we put k = 1 and consider the harmonic function:

Gulr) = 2, AT M =y |72

which converges for — 1 < o < 1. Then ¢, Ar) = A% - b (r), so the
instanton is invariant. This results in a 3-parameter family of monopoles.

Now ¢, describes a fundamental solution of the Laplacian acting on
sections of a flat real line bundle with monodromy A* along the non-trivial
loop in H3/T, so we have constructed a bundle F on twistor space, which

is an extension of I(1) by L*(—1), where L is a real flat line bundle in
1
the Picard group of Z with monodromy A2 "“.

The same procedure can be used for Schottky groups I' of genus g, by
twisting the sum with a character I' > R., close to 1. This gives a
3k — 5+ x(S) parameter family of monopoles. This too doesn’t give an open
set in the moduli spaces and it appears that the construction of the general
solution is not yet clear, even in these simple cases.

Possibly this can be remedied by going over to the next Atiyah-Ward
ansatz, which exploits the self-dual Maxwell equations on X. Here the

vanishing sets could be choosen to be elliptic curves corresponding to closed
geodesics in M.
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