Zeitschrift: L'Enseignement Mathématique
Herausgeber: Commission Internationale de I'Enseignement Mathématique

Band: 34 (1988)

Heft: 1-2: L'ENSEIGNEMENT MATHEMATIQUE

Artikel: GEODESICS IN THE UNIT TANGENT BUNDLE OF A ROUND
SPHERE

Autor: Gluck, Herman

DOl: https://doi.org/10.5169/seals-56596

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 16.10.2025

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-56596
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

L’Enseignement Mathématique, t. 34 (1988), p. 233-246

GEODESICS IN THE UNIT TANGENT BUNDLE
OF A ROUND SPHERE

by Herman GLUCK

What is the optimal unit vector field that can be drawn on the round n-sphere
S™? If we interpret optimality to mean that the vector field has minimum volume
when viewed as a cross-section of the sphere’s unit tangent bundle US”, then it is
known [GIl-Zi] that a unit vector field on the 3-sphere is optimal if and only if it
is tangent to a Hopf fibration. But it is also known [Jo] that these Hopf vector
fields are no longer optimal on the 5-sphere. Sharon Pedersen has recently discovered
[Pe] that on spheres of dimension at least 5, there are unit vector fields of excep-
tionally small volume, converging to a vector field with one singularity. Her results
suggest the possibility that, beginning on the 5-sphere, there are no vector fields of
minimum volume. Her methods show that an understanding of the geometry of a
sphere’s unit tangent bundle can be expected to play a central role in future
investigations in these directions. Inspired by her results, we give here a completely
elementary and self-contained determination of the geodesics in the unit tangent
bundle US".

Let (p(2), v(t)) be a constant speed geodesic in US", with its usual metric
(which we will describe in the next section). We will quickly learn the
following:

1) The foot point p(f) need not travel along a geodesic in S” as it would
in the flat case of R"™ But it does trace out a spherical helix, lying
entirely within some great 3-sphere S* in S”, and it does so at constant
speed | p'(t) |-

2) The vector v(f) is tangent to S at the point p(t), and has constant

coefficients with respect to the usual tangent-normal-binormal Frenet
frame of the helix p(t):

u(t) = aT(t) + bN(t) + cB(t).

In particular, it too has constant speed | v'(f) |, meaning the norm of its
covariant derivative is constant.

A quick dimension count shows that not every curve (p(t), u(t)) in the unit
tangent bundle US" which satisfies the above conditions can be a geodesic:
there must be one further constraint. To express this, we define two
quantities, as follows.
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Given such a curve (p(t), v(t)), by its slope we will mean the ratio of its
“vertical” speed | v'(t) | to its “horizontal” speed | p'(¢) |. Since these are both
constant, so is the slope.

We define the writhe of the helix p(t) to be

/(curvature)? + (torsion)? .

It too is constant.

FUNDAMENTAL CONSTRAINT.  The curve (p(t), v(t)) in US", satisfying 1)
and 2 ) above, is a geodesic there if and only if

SLOPE = WRITHE .

If p(t) is constant, then neither “slope” nor “writhe” are defined. If
p(t) 1s a great circle in S”, then we take its “torsion”, and hence its “writhe”,
to be undefined. In each of these cases, we set the interpretation of the
Fundamental Constraint as follows.

If p(t) is a constant point, then (p(t), v(t)) will be a geodesic in US"
if and only if o(t) traces out a great circle in the tangent space to S"
at that point.

If p(t) is a great circle in S", travelled at constant speed, then (p(t), v(t))
will be a geodesic in US" if and only if v(t) spins at constant but arbitary
speed along a great circle orthogonal to that of p(f). If this speed is zero,
then v(t) is a parallel vector field along p(¢).

We can re-interpret the Fundamental Constraint, as follows. Let p(t)
be a spherical helix, travelled at unit speed, inside some great 3-sphere S°
in S". Consider the Frenet frame T(t), N(t), B(t) along p(t), and the Frenet
equations:

T"=xN, N = —xT —1B, B = 1N,

where k¥ = curvature and T = torsion. The vector U = 1T — kB satisfies
U = 0. We call U the instantaneous axis vector of our helix. It spans the
unique direction along p(t) which appears constant in both Frenet and
parallel frames.-

FUNDAMENTAL CONSTRAINT (2°¢ version). Let p(t) be a spherical helix
lying in a great 3-sphere inside S", and let u(t) be a unit vector field
along p(t) which appears constant in Frenet coordinates. Then (p(t), v(t))
is a geodesic in US" if and only if v(t) is orthogonal to the instantaneous
axis of the helix.
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The paper is organized into the following sections:

1. Geometry of the unit tangent bundle. We describe the metric in two
ways, and when the base space is a round sphere, we see that geodesics in
its unit tangent bundle project to spherical helices on the sphere.

2. Geodesics in US? Some of the phenomena show up in this case.
3. Helices in S3. Frenet equations, curvature, torsion and writhe.

4. Sasaki’s equations. A general calculus for geodesics in the unit tangent
bundle UM of any Riemannian manifold M.

5. Proof of the Fundamental Constraint. A blend of the Sasaki and Frenet
equations.

I am grateful to Sharon Pedersen for a detailed reading of the manuscript,
and for a number of improvements. Thanks also to Dennis DeTurck for
reading the manuscript, and to Wolfgang Ziller for telling me about
Sasaki’s work. Finally, thanks to the National Science Foundation for their
support.

1. GEOMETRY OF THE UNIT TANGENT BUNDLE

Let M be an n-dimensional Riemannian manifold, and (p(z), u(t)) a path
in its unit tangent bundle UM. It is customary to give UM the Riemannian
metric in which arc length s(t) along this path is given by the formula

SO =1p@e)12 + 1@,

where

p'(t) = tangent vector to the curve p(t) in M ,

v'(t) = covariant derivative of v(t) along p(t) in M ,

and the norms of these vectors are measured in the given Riemannian
metric on M.

When M is flat, and hence parallel translation is independent of path,
the above metric on UM is simply the product metric of M x S" 1. So
the constant speed geodesics in UM, for example, are just the paths
(p(t), v(1)) for which p(t) and o(f) are themselves constant speed geodesics

in their respective spaces. In particular, each geodesic in UM certainly
projects to a geodesic in M.
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But when M is curved, the story is quite different. A geodesic in the unit
tangent bundle UM need not project to a geodesic in M. We can already
see this when M is a round two-sphere.

SZ

FIGURE 1 FIGURE 2

/

In each of Figures 1 and 2, we depict a path (p(t), o(t)) in the unit
tangent bundle US? of a round two-sphere S* of radius 1. Though the paths
are different, their initial points are the same and their terminal points are
the same.

In the first path, the point p(¢) travels at constant speed along a geodesic
of length 2r on S? At the same time the tangent vector o(f) rotates at
constant speed with respect to a parallel coordinate frame, turning through
a total angle © from beginning to end. The length of this path (p(z), u(t)) is

4+ 4r?.

If the base space were R? instead of S?, this path in the unit tangent
bundle would be a geodesic, indeed a shortest connection between its
endpoints.

In the second path, the point p(t) travels at constant speed along a
semicircle of length w sin r. At the same time the tangent vector u(t) rotates
at constant speed with respect to a parallel coordinate frame, turning through
a total angle somewhat less than m because of the curvature in the base
space S2. The savings is half of the area 2n(1—cos r) inside the small circle.
Hence the total angle that v(t) turns through is = cosr. It follows that the
length of this second path (p(t), v(t)) is =.

So the second path is shorter than the first. Indeed, it is a minimizing
geodesic in US? between its endpoints, whose distance apart is therefore ©. -

Yet its projection on the base space S* is a small circle, not a geodesic. j
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Immediately one asks: which curves on S" are projections of geodesics
in US"?

In answering this, we use another approach to the geometry of US",
viewing it as the homogeneous space SO(n+1)/SO(n—1). Here, the special
orthogonal group SO(n+ 1) is given the usual bi-invariant Riemannian metric,
and then the inner products in directions orthogonal to the‘ cosets of
SO(n—1) are transfered to the coset space SO(n+ 1)/SO(n—1). This makes the
projection map from SO(n+ 1) to US" a Riemannian submersion. We leave it
as an exercise to show that this Riemannian metric on US" coincides with
the one described earlier.

A geodesic in SO(n+ 1) which starts out orthogonal to one of the*cosets
of SO(n—1) remains orthogonal to all the cosets, and projects to a geodesic
in SO(n+1)/SO(n—1) = US". Furthermore, all the geodesics in US" are
obtained this way.

Suppose, for example, that n = 3. If (p(¢), v(t)) is a geodesic in US?,
then by the above, there must be a geodesic h(t) through the identity in
SO(4) such that

h(t) (p(0)) = p(r) and  A(r) (1(0)) = v(r).

But every such geodesic h(t) in SO(4) consists of independent, constant speed
rotations in a pair of orthogonal two-planes in four-space. Hence p(t) travels
along a spiral on an invariant torus, that is, along a spherical helix.

Notice that the isometry h(tf) which takes p(0) to p(t) and v(0) to v(t),
also takes the entire helix {p(t)} to itself. Hence it takes the Frenet frame
of the helix at p(0) to the Frenet frame at p(t). It follows that

u(t) = aT(t) + bN(t) + cB(t)

has constant coeffients with respect to this Frenet frame.

Beyond S°, nothing new happens for geodesics: it is easy to see that
every geodesic in US™ lies inside a totally geodesic submanifold US3. Indeed,
if (p,v) and (g, w) are nearby points on the geodesic, then the vectors
P, v, g and w determine the corresponding S°.

When it comes to proving the Fundamental Constraint, we will capitalize
on this observation by restricting our attention to S3.

We conclude: the only curves on S" which can be projections of
geodesics on US" are spherical helixes (allowing great and small circles and

points as special cases) which lie on great 3-spheres. All such spherical helixes
will appear in this way.
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2. GEODESICS IN US?

If (p(t), v(¢)) is a geodesic in the unit tangent bundle US?, then by the
discussion in the preceding section, there must be a geodesic h(tf) through
the identity in SO(3) such that

Bo) (p(0) = p&)  and  K(D) (W0)) = o(0).

But A(tf) must fix a line in three-space, and rotate the orthogonal two-plane
at constant speed. Hence p(t), if it moves at all, must travel along a great or
small circle, and v(t) must make a constant angle with this circle.

A concrete distance formula between points (p,v) and (q,w) in US?
is easily obtained. Let & denote the distance between p and g on S?, with
0 <6 <= If this distance is less than =, that is, if p and g are not
antipodal, then parallel translate » along the smaller arc of the unique great
circle between p and ¢, and let & denote the angle at g between this
parallel translate of » and the vector w, as shown in Figure 3. If 6 = m,
set ¢ = 0. Finally, let d denote the distance between (p,v) and (g, w) in
US2. Then a straightforward calculation reveals the formula

cos (d/2) = cos (0/2) cos (g/2),

which is just the Pythagorean formula on a round sphere of radius 2, as
indicated in Figure 4. Indeed, we have

US? = SO(3)/SO(1) = SO(3),

a round, real projective 3-space.

FIGURE 3 FIGURE 4

N\
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3. HEeLICES IN S°

A spherical helix in S° is a curve p(t) of constant geodesic curvature
and torsion. As in R3, two spherical helices of the same curvature and

torsion are congruent.
If the curvature is nonzero, then we can define a Frenet frame TI(2),
N(t), B(t) along p(t) in the usual way, and get the Frenet equations:

T =xN, N = —xT —1B, B =1N.

Here we assume that ¢ is an arc length parameter along p(t), and use
primes ' to denote covariant differentiation of vector fields along this path.
A model helix in S> is given by

p(t) = (cos & cos at, cos o sin at, sin o cos bt, sin o sin b) .
Here o ranges between 0 and /2 and determines the shape of the flat torus
x2 4+ x%2 =cos’a, x3+ xi=sin’a,

on which the helix p(f) lies. We take the numbers a and b to be = 0,
and require that

a®cos? o + b%sin?a =1,
so that the helix will be traversed at unit speed. Every spherical helix in S°
is congruent to one of these models.
Next, we give formulas for the curvature x, torsion 7, and writhe
p = /x% + 12 of the model helix p(t) in terms of the descriptive parameters

o, a and b. These formulas are given as general information only, and will
not be used here.

We first record two simple inequalities which follow from the equality
a?cos? o + b%sin® o = 1.

Note that a = 1 and b = 1 satisfies this equation. So if one of these
quantities increases above 1, the other must decrease below 1. Arranging
matters so that a is the larger of the two, we will then have

(@®>—1)(1-b%)=0.
In addition,
a’? + b* > a*cos? o + b?sin?a = 1,
so we have

a? +b>—-1>0.
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The formulas for curvature, torsion and writhe are as follows.

Curvature = x = \/(?12—1) (1—-b?%
ab

Torsion =1 =

Writhe =p=./a®> +b>—1.

Consider the 3-dimensional linear space of vector fields
aT(t) + bN(t) + c¢B(z)

which can be written as constant coefficient combinations of the Frenet
vectors along the helix p(t). Covariant differentiation along the helix maps
this linear space to itself according to the Frenet formulas.

We’ve already noted in the introduction that the instantaneous axis vector
U = 1T — xB satisfies U’ = 0.

Comnsider the vectors N and V = (x/p)T + (t/p)B, which form an ortho-
normal basis for the orthogonal complement of U. Note that

N = —xT —11B = —pV, and
V' = (x/p)T" + (t/p)B" = (x/p) (xN) + (1/p) (tN) = pN.
Thus, covariant differentiation along the helix kills the instantaneous axis

vector and takes the orthogonal 2-plane to itself by a 90 rotation, followed
by multiplication by the writhe.

4. SASAKI'S EQUATIONS

Let M be any Riemannian manifold, and UM its unit tangent bundle
with the Riemannian metric described in section 1.

THEOREM (Sasaki [Sa], 1958). The curve (p(t), v(t)) in UM isa constant
speed geodesic there if and only if both of the following equations hold:

1) U” — _ <U” v/ > U
2) p" = R, vp .

Here, primes denote ordinary derivatives with respect to ¢t when applied
to functions, and covariant derivatives along the path p(t) when applied
to vector fields. For example, the first prime in p” represents ordinary
differentiation, the second, covariant differentiation. The symbol R denotes the
Riemann curvature transformation

R:TM, x TM, - Hom(TM,, TM,).
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We give a quick proof of Sasaki’s theorem, and refer the reader interested
in further details both to Sasaki’s original paper and to a brief treatment of
his result in [Ba-Br-Bu, pages 37-39].

First note that the energy of the curve (p(¢), v(t)) in UM is given by

1 1
E = 1/2J <p,p'>dt+ 1/2J <v,v'>dt.

0 0
This curve is a geodesic in UM precisely when it is a critical point of E
for fixed end point variations. These include variations which fix all the foot
points p(t), that is, fixed end point variations of the second integral. This
second integral equals the energy of the curve u(t), lying in the unit sphere
in the tangent space to M at p(0), obtained by parallel translating u(t)
backwards along p(t) to p(0). Hence the curve u(t) is a geodesic, that is,
a great circle arc, in this unit sphere.

Because u(t) is a unit vector field, <u, u> = 1. Differentiating twice,
<u’,u> + <u,u'> = 0. Because u(t) runs at constant speed along a great
circle, u” 1s parallel to u. Hence u” = — </, u'> u. Parallel translating this
equation back out along p(t), we get Sasaki’s first equation.

To get Sasaki’s second equation, consider a fixed end point variation
(p(t, 5), v(t, 5)) of the curve (p(?), v(t)) in UM. Suppose this curve is a critical
point of the energy E for such variations. Then

1 1

0/0s <p',p'> dt + I/ZJ d/0s <v',v'> dt.

0

0 = dE/ds = 1/2f

0

The first integrand is processed by differentiating with respect to s, then
interchanging the order of the ¢ and s differentiations, and finally setting up
for integration by parts, yielding

0/0t <0p/0s,p'> — <0dp/ds,p"> .

The second integrand is processed similarly, except that the Riemann
curvature transformation appears as a penalty for interchanging the order of
the ¢ and s differentiations, since this time both are covariant. We get

0/0t <0v/ds,v'> — <0dv/ds,v"> + <R(Op/ds, p')v, v'> .

Integrating these two expressions with respect to z, as required, the leading
term of each drops out because the variation is fixed end point. Furthermore,
the second term of the second expression is dead zero: since <v,v> = 1,
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0v/0s is orthogonal to v, while by Sasaki’s first equation, v” is parallel to v.
We get

1
0= J <0p/ds, p"> — <R(0p/ds, p')v, v'> dt .
0
Capitalizing on the symmetries of the curvature, we rewrite this as
1
0 = J <p”"—R(, v)p', Op/0s> dt .
0

Since p(t, s) was an arbitrary fixed end point variation, we get
pll _ R(Ul, v)p/ — 0 ,

which is Sasaki’s second equation.

Thus if the curve (p(t), v(t)) is a geodesic in UM, then both of Sasaki’s
equations must be satisfied. Conversely, if these equations are satisfied, then
the curve 1s a critical point of the energy E for fixed end point variations,
and hence a geodesic in UM. This completes the proof of Sasaki’s theorem.

Here are some immediate consequences of Sasaki’s theorem.
Suppose (p(t), v(t)) is a constant speed geodesic in UM. Then:

1) The vertical speed | v'(t) | is constant. Indeed,
<> =1=<p,vV> =0,
and hence
0/0t <v,v'> =2 <v,vV> = -2 <v,v> <p,vV> =0,
by Sasaki’s first equation.
2) The horizontal speed | p'(¢) | is also constant. We have
oot <p',p'> =2<p',p'> =2 <RW,v)p,p'> =0,

by Sasaki’s second equation together with the skew-symmetry of the Riemann
curvature tensor <R(-,:)-,+ > in its last two positions.

3) If u(z) is a parallel vector field along p(z), then Sasaki’s second equation
reduces to the equation p” = 0 of a geodesic in M. Conversely, if p(z)
is a geodesic in M and v(t) a parallel unit vector field along it, then
Sasaki’s two equations are clearly satisfied, so (p(t), u(t)) must be a geodesic
in UM. But there will also be geodesics (p(¢), v(t)) in UM for which p(t)
is a geodesic in M, while v(t) is not parallel along p(¢).

J
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5. PrROOF OF THE FUNDAMENTAL CONSTRAINT

Let (p(t), v(t)) be a curve in the unit tangent bundle US? such that
p(t) traces out a spherical helix in S® at constant speed, while v(¢) has
constant coefficients with respect to the moving Frenet frame along this
helix. We saw in section 1 that a geodesic in the unit tangent bundle must
have this form, and also noted there that it will be sufficient to restrict
our attention to the 3-sphere S°.

In this section we will verify the Fundamental Constraint: (p(t), u(t)) is a
geodesic in US? if and only if its slope equals the writhe of the helix p(z).
We will assume that the helix has nonzero curvature, and leave the
degenerate case, in which p(t) is a point or a great circle, until the very end.

The key step in the argument may be described as follows. Consider the
3-dimensional linear space of vector fields aT(t) + bN(t) + cB(tf) which can
be written as constant coefficient combinations of the Frenet vectors along the
helix p(t). Covariant differentiation along the helix provides an endomorphism
of this space, whose action was described in section 3. If we fix the value
of ¢, this space becomes the tangent space to S° at p(t). Here we may
consider the action of the Riemann curvature transformation R(v', v). The key
step will be to compare these two endomorphisms.

In carrying out the argument, we will be blending Sasaki’s two equations:

1) v = — <v,v>v
2) p" = R, v)p

with the three Frenet equations for the helix:

3)) T = KN
4) N = —«T — 1B
5) B = TN .

To begin, assume that (p(t), u(t)) is a geodesic in US>. For convenience,
let t be an arc length parameter along p(f). We first aim to show that
the action of covariant differentiation coincides with that of the Riemann
curvature transformation R(v', v). To do this, we must verify

6) T = R(v,v)T
7) N' = R, v)N
8 B = R(v,v)B.
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The unit tangent vector field T(t) = p'(t), since ¢t was set as an arc
length parameter along p(t). Making this substitution in Sasaki’s equation 2)
gives equation 6).

To get equation 7), combine equations 3) and 6) to get

9 «¥N = R, v)T.
Then take covariant derivatives on both sides of this equation:
kN = R(",v)T + R, v)T + RV, v)T".

Sasaki’s equation 1) and skew symmetry of R show that R(v”, v) = 0. Skew-
symmetry alone gives R(v',v') = 0. In the third term on the right, replace
T’ by kN. Divide through by « to get equation 7).

Covariant differentiation and the Riemann curvature transformation
R(v', v) are both skew symmetric endomorphisms of our 3-dimensional linear
space. Equations 6) and 7) tell us that they agree on two out of the three
basis vectors. Automatically, they must agree on the third, giving equation 8§).
Thus the two endomorphisms coincide.

From this, we want to conclude that slope = writhe.

We've already described the action of covariant differentiation in section 3:
it kills the instantaneous axis vector U = tT — kB and takes the orthogonal
2-plane to itself by a 90" rotation, followed by multiplication by the writhe.

Since we are on S3, one can show that the Riemann curvature transfor-
mation R(v, v) consists of orthogonal projection of the tangent 3-space onto
the 2-plane spanned by v and v, followed by rotation by 90 in the direction
from v to v/, followed by multiplication by | v’ |.

Since these two transformations coincide, writhe = | v"|. All this assumes
that | p’| = 1. In general, we get

writhe = | v | /| p'| = slope,

verifying the necessity of the Fundamental Constraint.

Note also that, because the two transformations coincide, the vector v(t)
must be orthogonal to the instantaneous axis vector U(t) of the helix p(t),
thus verifying the necessity of the Fundamental Constraint in its second
formulation.

Conversely, suppose (p(¢), u(t)) is a curve in US?, with p(t) tracing out a
spherical helix in S* at constant speed, and u(t) having constant coefficients
with respect to the moving Frenet frame along this helix. In particular,
| v(¢) | is constant, and hence so is the slope | v'(¢) | /| p'() |. Suppose this slope
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equals the writhe of the helix. We must show that (p(t), u(t)) is a geodesic
in US>,

As in the first part of the proof, we aim to show that the action of
covariant differentiation coincides with that of the Riemann curvature trans-
formation R(v', v).

To this end, adjust the speed so that ¢ is an arc length parameter
along the helix p(t). Hence | v’ | = writhe. But this is the maximum magnifica-
tion of covariant differentiation, and can only be achieved when u(t) is
orthogonal to the instantaneous axis vector U(t). Thus <o, U> = 0.
Differentiate this equation, keeping in mind that U’ = 0, and get <v', U>
= 0. Hence v’ is also orthogonal to the instantaneous axis.

But this means that the kernel and image of covariant differentiation
coincide with the kernel and image of the Riemann curvature transformation
R(v',v). Since writhe = |v'|, the maximum magnifications of these two
transformations also coincide. Then, by their special nature, so must the
transformations themselves.

With this done, we can now check that (p(¢), v(?)) is a geodesic in US>
by verifying Sasaki’s two equations.

Consider the vector field v”. Since covariant differentiation coincides with
application of R(v,v), the vector v” is obtained from v by twice rotating
the v’ plane by 90" and twice multiplying by | v’ |. That is,

1"

V= — <V, >,

which is Sasaki’s first equation.
Next look at the vector field T'. This must be the same as R(v', v)T.
But T(z) = p'(t) and T'(t) = p"(¢t), so we get

pl/ — R(U/’ v)pl ,
which is Sasaki’s second equation.

Hence (p(t), v(t)) must be a geodesic in US? by Sasaki’s theorem, verifying
the sufficiency of the Fundamental Constraint.

To verify the sufficiency of the Fundamental Constraint in its second
formulation, suppose we begin instead with the information that u(t) is
orthogonal to the instantaneous axis vector U(f). It is here that covariant
differentiation achieves its maximum magnification, equal to the writhe of the
helix p(t). Thus | v'(t) | = writhe. The above proof of sufficiency now applies,
and we conclude again that (p(t), 1(¢)) must be a geodesic in US?3.
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We complete the proof of the Fundamental Constraint by checking the
two degenerate cases, again using Sasaki’s equations.

If p(t) 1s a constant point, then Sasaki’s second equation is certainly
satisfied, while the first tells us that (p(¢), v(t)) is a geodesic in US?® if and
only if u(¢) traces out, at constant speed, a great circle in the tangent space
to S* at that point.

If p(t) is a great circle in S°, travelled at constant speed, then p” = 0,
so Sasaki’s second equation reads

R, v)p = 0.

This can be satisfied in two ways.

One is that v = 0, so that u(t) is a parallel vector field along p(z).
In this case, Sasaki’s first equation is automatically satisfied, so (p(t), v(?))
must be a geodesic in US>.

The other way for Sasaki’s second equation to be satisfied is that v
and v are both orthogonal to p’. Parallel translate v(t) backwards along
p(t) to the vector field u(t) in the tangent space to S® at p(0). Then
Sasaki’s first equation says that u(t) traces out, at constant speed, a great
circle orthogonal to p’(0). Equivalently, v(¢) spins at constant but arbitrary
speed along a great circle orthogonal to that of p(¢). In these circumstances,
the curve (p(z), v(t)) will be a geodesic in US®>.

But these are precisely the interpretations of the Fundamental Constraint
which were set in the introduction, and the proof is complete.
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