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266 J.-P. KAHANE

(19) f = ilo:f(").

Alors f est limite de martingale dyadique et sa distribution est p.

f) p verifie (9). On la décompose encore sous la forme (17), on définit
les f™ et f par (19). La condition est la méme, et la totale de f,
fo, est nulle. En remplagant 0 par o dans le second membre de (18) ce
qui est possible & cause de I'hypothése (9), on obtient f, = a. Le théoréme
est démontré.

Remarquons que la totalisation de la fonction f nécessite une seule
etape dans les cas a), b), c), d), et quelle est pratiquement terminée a
I'étape o (K® est réduit a {0}) dans les cas e) et f).

Dans le cas f) on peut introduire un « arbre de distribution » permettant
le calcul de f,. I s’agit de larbre des mesures p,, ., qui sont les
distributions de f sur les cellules C(g4, ..., €,). Ainsi

(20) {“81,...,8,1 = Hey, .80, 0 + Bty s oy B 1

uel,...,an(c(glv e gn)) = ual,...,an(X) = 2—n

(n=0,1,..;g=0 ou 1). La condition (20) est nécessaire, mais elle n’est pas
suffisante. La théorie de la totalisation dyadique montre que se trouve
nécessairement dans 'arbre une infinité de mesures a supports compacts;
la premiere €tape de la totalisation consiste a remplacer ces mesures par des
mesures ponctuelles ayant méme masse et méme centre de gravité; dans le
nouvel arbre, on recommence 'opération, et ainsi de suite, transfiniment au
besoin, jusqu’a obtenir un arbre stationnaire. Cet arbre stationnaire décrit
alors la martingale dyadique (au niveau n, on obtient la distribution de
f.). 1l serait intéressant de connaitre la caractérisation des arbres de distri-
butions des limites de martingales dyadiques.

CITATIONS ET PASTICHE

1. Si une part de mon ceuvre mathématique vient a sauver mon nom de
Poubli, sans doute resterai-je ’analyste qui le premier a trouvé les moyens
d’intégrer toute dérivée et de calculer les coefficients de toute série trigo-
nomeétrique convergente de somme donnée.

Arnaud DENJOY

Notice sur les travaux scientifiques,
Paris, Hermann, 1934 (p. 5)
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2. Les théories les plus audacieuses des mathématiques recentes
neffrayaient nullement Painlevé. Il avait une aptitude admirable a les saisir,
malgré toute leur nouveauté, et méme a les résumer avec un bonheur
d’expression auquel 'auteur lui-méme n’aurait pas su atteindre. Quelqu’un
lui exposait un jour, dans une conversation, I’économie d’une méthode
d’intégration, procédant par une infinité d’étapes successives, chacune d’elles
garrétant & un ensemble-barriére, dont ’étape suivante enléve au moins un
morceau. « Oui, tout y passe », répondit Painlevé qui suivait avec une atten-
tion et une lucidité parfaites les explications de son interlocuteur. Ce mot
exprimait d’une fagon merveilleusement compréhensive, et 'impossibilite qu'un
irréductible noyau de résistance a la méthode se constitudt, et I'achevement
nécessaire des opérations au terme accessible d’une chaine de calculs.

Arnaud DENJOY
Hommes, forme et le nombre

Paris, Blanchard, 1964 (p. 87-88)

3. La dérivée dyadique est une forteresse. Elle a été construite, par
des batisseurs géométres, a partir d’'un terre-plein de grande hauteur, suivant
un plan dont on a perdu la trace; on ignore méme la hauteur du terre-plein
de départ. On sait seulement que les batisseurs procédaient par étapes et
selon un systéme: au départ, ils ont divisé le terre-plein en deux parties
egales, porté de la terre d’une partie sur l'autre et nivelé; sur chacun des
niveaux ils ont procédé de méme, et ainsi de suite, construisant ainsi, de
plus en plus hauts, de plus en plus profonds, de plus en plus tourmentes,
des tours et des fossés, des créneaux et des puits, des clochers, des ravins,
un edifice fantastique joignant le ciel et les abimes. Le totalisateur va
démanteler la forteresse, et la ramener au terre-plein de départ. Pour cela, il
sattaque d’abord aux places les plus faibles, aux plages sur lesquelles
le relief est borné et donc facile & niveler. Une fois nivelée chacune de
ces plages, la forteresse est 4 peine entamée. Mais le nivellement qu’on
vient d’opérer fait apparaitre de nouvelles places faibles, que le totalisateur
nivelle a leur tour. Ainsi de proche en proche, autour du cceur encore
inviol¢, des plateaux remplacent les morceaux abattus, s’agrandissant et s’enri-
chissant sans cesse de nouveaux décombres. A chaque étape, de nouveaux
murs s’eécroulent, le cceur de la forteresse se réduit. Mais si les batisseurs
ont et¢ habiles, ni mille ni mille milliards d’étapes ne suffisent a détruire
ce qui reste. Tout l'art du totalisateur est alors de bien employer son temps.
Accélérant son ceuvre, il fait tenir une infinité d’étapes en une heure. L heure
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ecoulée, s’il reste encore a faire il se donne une demi-heure pour une
infinité de nouveaux assauts. Si cela ne suffit pas, encore un quart d’heure
et ainsi de suite. Si, la seconde heure écoulée, quelque chose reste debout,
il presse encore le rythme. Chaque attaque emportant un morceau, s’il les
précipite comme il convient, rien ne résiste, tout y passe, il vient un instant
ou le dernier pan de mur s’effondre, et le nivellement est achevé.
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