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GLOBAL CONSTRUCTION OF THE NORMALIZATION
OF STEIN SPACES

by Sandra Haves and Genevieve POURCIN

INTRODUCTION

A fundamental tool in the theory of complex manifolds X is Riemann’s
Theorem on Removable Singularities of holomorphic functions which ensures
that all functions holomorphic outside of a rare analytic subset of X and
locally bounded on X can be extended to functions holomorphic on all
of X. In other words, all weakly holomorphic functions on X are actually
holomorphic. Although this theorem does not hold for arbitrary complex
spaces, Oka [12] showed in 1951 that every complex space X can be
modified to a complex space X for which Riemann’s continuation theorem
is valid, the so-called normalization of X.

Stein spaces X are complex spaces which can be completely described
by the algebra ¢(X) of global holomorphic functions. Since a complex space
i1s Stein if and only if its normalization is Stein [11], it is natural to ask
if the normalization X of a Stein space X can be constructed just from
the holomorphlc functions on X. Phrased differently, the question is whether
the algebra C(X) of all holomorphic functions on X or equivalently, the
algebra Cf(X) of all weakly holomorphic functions on X, can be derived
from the algebra ((X) of holomorphic functions on X.

The purpose of this paper is to demonstrate that this is possible when

X 1s irreducible: CF(X) is the topological closure of the integral closure
~

r~
C(X) of ((X). An example given in §1 shows that ((X) is not in general
topologically closed even if X is locally irreducible. ¢(X) can also be obtained

by taking the intersection of the localizations S; ' ¢(X) of the integral
S~

closure ((X) of ¢(X) with respect to S.: = {ge ((X):g(x) # 0} for every

X e X (see § 3).

The proof relies on an analytic and an algebraic theorem, namely Rossi’s

theorem [13] generalizing the Remmert quotient and the integral closure
theorem of Mori-Nagata [7].
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An analytic consequence of the construction presented here is that the

~ ~ ~

normalization X of an irreducible Stein space X is (O(X)-convex, O(X)-
I~

separable and has local coordinates by functions in @(X). Some algebraic

~

results are that (O(X) is completely normal and that the two algebras

(5(75 and (9()2) are always locally equal, i.e. their localizations at all
maximal ideals in @(X) are equal.

In this paper, a complex space refers to a reduced complex space with
countable topology.

~ ~
1. EXAMPLE OF A STEIN SPACE X WITH O(X) # O(X)

Let (X, ®) be a complex space with normalization m: X — X. Since w
i1s surjective, the map n*:0(X) — (0()?), f+ fom, is injective and the
holomorphic functions @(X) on X can be considered to be a subring of the
holomorphic functions (9()2) on the normalization X of X; this will be
indicated by 0(X) < (9()2). If X is irreducible and Stein, then (9()2 ) contains

S~
the integral closure O(X) of O(X) but does not always coincide with it,

as will be shown in this section.
For an irreducible complex space (X, ¢), the integral domain O(X)

1s said to be normal, if it is integrally closed in its field of fractions
~

Q(O(X)), ie. O(X) = O(X). Recall that Q(O(X)) is the field of meromorphic
functions M(X) on X when X is irreducible and Stein due to Theorem B
[10, 53.1, 52.17], and that the algebras M(X) and M(X) are isomorphic
for every complex space X [8, p. 161].

The following characterization of normal irreducible Stein spaces X by
their global function algebra O(X) is essentially contained in [2, § 1, p. 35].

THEOREM 1. An irreducible Stein space X is normal if and only if the
integral domain O(X) is normal.

An analysis of the proof shows that even when X is just irreducible and
normal, ¢(X) is also normal. Theorem 1 implies

o~

COROLLARY 1. For an irreducible Stein space X with normalization X,
S~

the integral closure O(X) of O(X) is contained in (9()?).

The following example shows that there are functions f e @()Z) which
are not integral over O(X). In this example, X : = (C, ¢') is an irreducible
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and locally irreducible Stein space given by a substructure of the canonical
complex plane (C, @), which is then the normalization X of X. The sub-
structure is defined by a “Strukturausdiinnung” (see [10]) which results by
replacing the stalks (/,, n e N, with the stalks of generalized Neil parabolas
becoming steeper as n increases. More precisely, let (p,)..n b€ a strictly
increasing sequence of prime numbers. For every n e N,

X, = {(x,y) e C? s xP = yrt1]

is an irreducible, locally irreducible analytic subset of C? with the origin as
the only singularity and with normalization

1,:C = X, , t (T ),

n>

Let f e O(C) be the identity and denote by ¢y the canonical complex
structure on X,. The germ f,e @, of f at the origin is integral over
Oy, , with respect to a polynomial of degree p,, and p, is the minimal
degree of all such polynomials.

Now define X : = (C, ¢') as a substructure of the canonical plane (C, ¢)
with stalks

| O. , x¢N
o, =
* Ox,,» X =neN
such that the following diagram commutes
g, - 0,
= | | =

o

] §
OXn,O - (/0’

where €, — ¢, is the map induced by the identity (C, ¢) — (C, @) and
G, = O, 1s determined by the translation C - C,z+ z — n.
The identity f e ¢(C) is not integral over ¢'(C), because otherwise every
polynomial of integral dependence would have degree at least p, forall ne N.
In conclusion it should be mentioned that @(f) is almost integral over

O(X) [7,§3] for every irreducible Stein space X, since X has a global
universal denominator [10, E.73a].
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2. CONSTRUCTION OF (O()Z) FROM ((X) FOR STEIN SPACES X

According to a theorem of Oka [12], the normalization sheaf @ of
weakly holomorphic functions on a complex space (X, ®) is coherent.
Consequently, there is a canonical topology making O a Fréchet sheaf;
the global weakly holomorphic functions (O(X ) will always carry this topology.
Since the holomorphic functions 0(X) on the normalization X of X are
topologically isomorphic to (O(X) [8, 8.3], the question posed in the intro-
duction can now be answered.

MAIN THEOREM. For an irreducible Stein space X, the integral closure
~ ~
O(X) of O(X) isdensein OX).

Proof. Let m: X — X be the normalization of X and put 4: = (5(3{)
Since m is proper, X is O(X)-convex and therefore A-convex. Note that
Corollary 1 implies 4 < O(X) and that A is the closure of 4 with respect
to the canonical topology in (5(X ).

Consider the equivalence relation R on X defined by A, ie. (x,y)eR
iff for every fe A, f(x) = f(y). Rossi’s theorem [13] ensures that the
topological quotient Y: = )z/R can be given the complex structure of a
Stein space such that the pI‘O_]CCthIl p: X > Y is holomorphic and proper
and the map p*: O(Y) — (/(X) f + f o p, induces an isomorphism (O(Y) =

It suffices to show that every f e@(X) can be factorized through a
holomorphic function on Y, meaning that an F € ((Y) exists with Fop = f.
This will be accomplished by first factorizing f € @(X~) through a continuous
function F on Y and then proving that F is actually holomorphic. The
existence of such a continuous factor F for f is equivalent to demonstrating
that every f 6(9(}2) is constant on the fibers of p. The validity of this
geometric statement will be shown now using commutative algebra.

(9()2 ) is almost integral over O(X) (see § 1), and hence over the localization
S;1A of A with respect to S.:= {ge€ O(X):g(x) # 0} for every xe X.
Moreover,

O ————
S 1A = S 10(X)

holds [3,V, 1.5, Corollary 1]. The localization S;'0(X) = (O(X)m(x) of the
Stein algebra (O(X) at the maximal ideal m(x): = {f € O(X): f(x) = 0} is
noetherian — even more, it’s excellent [2, p. 35]. According to a theorem of
Mori-Nagata, the integral closure of a noetherian integral domain is
completely normal [7, 4.3, 3.6], implying
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(¥) OX)c () S;'4.
xeX

For fe®X), aecX and bep Y(p(a), it is now possible to conclude
that f(a) = f(b) is true. Let x: = m(a). Due to (), functions ge S, and
he A exist with f = h/g o m. Since a and b are equivalent with respect to
the equivalence relation R, f(a) = f(b) follows, and a continuous function
F:Y — Cexists with Fop = f.

Since the Stein complex structure on Y is not in general the canonical
ringed quotient structure, it is still necessary to verify that F is holo-
morphic in order to prove the density of A4 in @(i). To that end, let
He 0(Y) and G € O(Y) have the property that Hep = hand Gep = gom.
Such functions exist because p*(((Y)) = A holds. Then F = H/G follows,
and the germ F,, is the germ of a holomorphic function at p(a), since
the germ G,, of G at p(a) is a unit. The surjectivity of p implies that F
is holomorphic on Y, completing the proof of the theorem.

~

Note that the topology induced by ((X) on any subalgebra A of
(9(X~) 1s the metrizable topology of uniform convergence on compact subsets
of X. Because the closure A of A in 6(X~) is its completion, 4 can be
obtained without referring directly to &‘()f). Thus the Main Theorem can be

stated as follows:
If X denotes the normalization of an irreducible Stein space X, then

~ I~
((X) is the completion of the integral closure (X)) of ¢(X).

3. APPLICATIONS

In this section X will denote an irreducible Stein space with normalization

~ r~
n: X - X, 6£X) will be the integral closure of the holomorphic functions

¢(X) on X, ¢(X) the Fréchet algebra of weakly holomorphic functions on X
(or equivalently, the Fréchet algebra of holomorphic functions C“()Z )on X ), and

S.i={gel(X):g(x) # 0} for xeX.

Although the example given in the first section shows that the algebras
~ ~

O(X) and O(X) are not always equal, the inclusion (%) in the proof of the

Main Theorem implies that they are locally equal in the following sense.

S~ ~

THEOREM 2. For every xe X, the localizations of G(X) and O(X)
with respect to S, coincide.
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The next theorem implies an algebraic description of the topological
~ -

closure of O(X) in O(X).

~ S~
THEOREM 3. O(X) = () S;' O(X).

xeX

Proof. Let f eM()?) = M(X) be such that for every x e X there is

~
ageS, and an he O(X), with f = h/g o n. Then the germ f, of f at an
arbitrary point a € X is holomorphic, because the germ of gom at a is a
unit. Hence f € ¢(X), and the assertion is proved.

~

r~
CoroLLARY 2. The topological closure of (O(X) in O(X) is the inter-

~
section of the localizations of @(X) with respect to S, for all x e X.

The next result characterizes the weakly holomorphic functions on X
as being exactly those meromorphic functions on X which are almost integral
over 0(X).

COROLLARY 3. (O(X~ ) is completely normal.

Proof. Let f eM(X~) be almost integral over @()Z). Then f is almost

~
integral over ()(X) and therefore over S, ! @(X) for every x € X which has

been shown to be completely normal in the proof of the Main Theorem.
An application of Theorem 3 yields f € (9()2) and hence the assertion.

Using the classical Oka-Weil-Cartan Theorem [1, Anhang zu VI, § 4],
an immediate consequence of the Main Theorem is

. Ve I~
THEOREM 4. X is O(X)-convex, O(X)-separable and has local coordinates
~
by functions in (O(X).
A property which ensures that the holomorphic functions on X are
integral over the holomorphic functions on X is that O(X) is a finite

O(X)-module.

THEOREM 5. Let ue O(X) be any global universal denominator for X.
Then O(X) is isomorphic to the closed ideal u0O(X) in O(X), and
(9()2) is a finite O(X)-module if and only if this ideal is finitely generated.

Proof. Recall that a global universal denominator u for X always exists
[10, E.73a]. The multiplication map

OX) - 0X), fruf,
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defines an injective ¢(X)-module homomorphism. Thus, (9()2 ) is isomorphic to
the ideal u(O()Z) in O(X) which will now be denoted by I. Consider the

~ 1 1 . ~ L.
transporter ideal J:= @:— 0 of — 0O into O which is a coherent sheaf of
u u

ideals in @. The global sections J(X) form a closed ideal of @(X) by a
theorem of Cartan [4, 5], due again to the fact that X is Stein. Because
J(X) = I holds, the assertion follows.

~

COROLLARY 4. If O(X) does not coincide with (’0.(7(/), the closed ideal
u(O()Z) in O(X) is not finitely generated.

In a Stein algebra O(X), every finitely generated ideal is closed, as
Cartan [4, 5] showed. If X is at least two-dimensional, Forster [6] gave
examples of closed ideals in ¢(X) which are not finitely generated. According
to Corollary 4, the space constructed in § 1 gives a one-dimensional example.
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