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Remarks. 1) It would be interesting to see what kind of harmonic
representatives for classes in H(M ; R) can be found.

2) Theorem 4.2 generalizes to identify elements of H’(M, 8M ;R) with
L? harmonic forms for any oriented n-dimensional Riemannian manifold M
for which a conformal compactification of M x S* exists, for all k, provided
j < n/2.

§ 5. MONOPOLES AND INSTANTONS

Our goal is now to exploit the compactification X of M x S' (see §2)
to get monopoles on M from S'-invariant instantons on X. We shall also
relate the instanton number on X to various topological invariants of the
monopoles on M. General background for this section can be found in
Freed-Uhlenbeck [12] and Jaffe-Taubes [22]. More specifically our approach
here is very similar to the one taken in Atiyah [2].

Let P be a principal SU(2)-bundle over X, with c,(P) = k > 0. Recall
that X comes naturally with a conformal structure. This enables us to talk
about instantons or anti-self-dual connections A on P. These are defined to
be the solutions of the anti-self-duality equation:

5.1 F4 = — %, F* (%, the Hodge star on A*(X)).

Here F4 is the curvature of 4, a section of A(X) ® gp with gp = P X 4a5uU(2).
The instantons are the absolute minima of the Yang-Mills functional:

5.2 YM(A) = (16n%) "' [ <F4 A *F4>

where <o, > = — 2-tr(af) is an invariant inner product on su(2). For
an instanton YM(A) = k.

Next assume that the double cover S! of S! acts on P by bundle
automorphisms, covering the action on X ; the double cover will be needed
in order to include the spin bundles of X. Our interest will now lie in

S-invariant instantons on P. To relate these to objects on M introduce
the map:

JiM - X:m—1i(m 1) (compare 2.2),

which is a diffeor~norphism onto its image. Let v be the vectorfield on P
induced by the S'-action. If we interprete an S'-invariant connection A
as a l-form on P, then define the Higgs-field ® to be the su(2)-valued
function j*A(3v) on j*P. It is easy to see that @ is a section of j*gp.
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Further A; = j*A defines a connection on the bundle j*P over M. A little
computation shows that the S!-invariant connection A is anti-self-dual iff
(A5, @) satisfy the so called Bogomol'nyi equation on M :

5.3 | d4® = — % 4.

As 5.3 is the standard equation describing magnetic monopoles on three
dimensional manifolds, this leads to the definition.

Definition 5.1. A monopole on P is an S'-invariant instanton on P.

Normally one defines a monopole by imposing certain asymptotic con-
ditions rather than requiring it to extend over a compact manifold. In
Braam [10] it is explained that results of the Sibners imply that this
amounts to the same. We shall see below that the boundary data are the
same. '

If GA(P) denotes the group of S-invariant gauge transformations on P,
then GA(P) leaves the set of monopoles invariant. Just as for instantons
one can therefore define a monopole moduli space, equal to:

5.4 {solutions of 5.3}/GA(P)

In Braam [10] is shown that under some assumptions these moduli spaces
are non-empty finite dimensional manifolds.

We shall now return to our S l_equivariant bundle P and relate topological
invariants of the action to asymptotic invariants of (45, ®) on M. Restricted
to one of the fixed surfaces S i St acts by gauge transformations on P. The
fibres of E = P X gy, C* over S; decompose into eigenspaces for the St
action. Denote by m; e Z , the S 1_weight which is non-negative.

If m; > O then:

5.5 Es, =L, ®L*

where L; is the complex line bundle in E of weight m; and L7} that
of weight — m;; because ¢,(E;s;) = 0, L} is also the dual of L;. In order
to define the first Chern classes of L; it is convenient to have an orientation
of §;. Recall that X is oriented and that a neighbourhood of §; in X
looks like S; x R? The R? is oriented by the S*-action, and this induces an
orientation of S;. Now write ¢,(L;) = — k;- x; with k; € Z and x; the positive
generator of H*(S;;Z). If m; = 0 then Eg, is trivial as an S~1-equivariant
vector bundle. We shall leave k; undefined in this case.

There is one important constraint on the m;. This becomes clear by
remarking that — 1€ St acts as a gauge transformation on all of E, i.e. as
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+ 1 or as — 1. This implies that either all m; are even or they are all odd.
In Braam [10] we have shown that any set of invariants (m;, k;) satisfying
this constraint arises from a suitable S'-equivariant bundle, and that the
Sl.isomorphism class is determined by (m;, k;).

Definition 5.2. The moduli space of monopoles on a principal SU(2)-
bundle P with invariants (m;, k;) will be denoted by .#(m;, k;).
Having defined the relevant invariants of P, the question now arises

what they amount to in terms of asymptotic conditions for a pair (45, ®)
on M. The vector field v on P turns vertical over S;. This shows ‘that:

5.6 |®(y)| > m; if y—S§; <M.

This is the Prasad-Sommerfeld boundary condition used in physics and the
numbers m; are called the masses of the monopole.

The solutions of the Bogomol’nyi equation 5.3 are minima of the energy
functional :

5.7 E(4;,®) = 8m) " f | F2 1% +d,@]2dVs.

If the pair (45, ®) arises frbm an invariant connection A on P then
E(4,, ®) = YM(A). If we assume that (45, @) satisfies 5.4, then:

IdAS(D[ZdVS == lFA3l2dV3 = <FA3 /\ dA3®> = d<FA3'®> N
by the Bianchi identity. It follows that:
E(A5,®) = — ZZJ.(STC)_1 'jsj <F4.0> .

The minus sign appears because the boundary orientation of S; does not
agree with orientation we have given it above. A moments reflection shows

that 2 - (8m)~ ! - 5, <F*.®> = — m;-k;. Putting things together we get:

5.7 Sm, - k; = E(4;,®) = YM(A) = k.

This is essentially the localization formula in equivariant cohomology applied
to the equivariant c,(P), see Atiyah [2].

Exactly what the physical symmetry breaking would lead one to expect
does indeed happen: far away in M, that is near an §; with m; # O,
the connection almost becomes a U(l)-connection on L;, the bundle of
eigenvectors of @ of eigenvalue 5 - m;. The charges k; appear as first Chern
classes of these line bundles on the boundary surfaces. This is of course
nothing but the quantized charge of a U(l)-monopole, a so called Dirac
monopole, on L;. Dirac monopoles have singularities, but the genuine non-
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Abelian character of SU(2)-monopoles in the core of M allows for non-singular
solutions.

From 5.7 we see that ) m;-k; > 0 is necessary for the existence of
monopoles, however this is by no means sufficient as we shall see below
(also compare Braam [10]).

We shall end this section by giving some simple examples of monopoles.

Examples 5.3. 1) Monopoles with all m; = 0. For these monopoles
YM(A) = 0, so we are dealing with flat connections. The Higgs field @
vanishes, this follows from the Bogomol'nyi equation. It is not hard to see
that the moduli space #(0,0) equals the space of all representations
n,(X) - SU(2) modulo conjugacy: one assign to a flat connection its
holonomy representation. This space can be very non-trivial ; e.g. if M = H?3/
Fuchsian group = § x R, with S a surface, then .#Z(0,0) is the space of
representations of m,(S) » SU(2) modulo conjugacy. By the theorem of
Narasimham-Seshadri this is the same as the moduli space of semi-stable
SL(2, C)-bundles on S, for any complex structure on S. The topology of this
(0, 0) was investigated by Atiyah-Bott [4].

2) Next keep k; = 0 but take at least one m; to be nonzero. The
connections are still flat so ® is covariantly constant. This shows that
M(m;, 0) = @ unless all m; are equal. Further

M(m, 0) = Repr (n,(M), S*) = Repr (H,(M ; Z), S*)
= Hy(X;Z)r x {H(X;R)/H (X Z)}

3) For M = H?® all monopoles were determined by Atiyah [2]. The
moduli space #(m, k) equals {d:S* - S?; ¢ rational, degree ¢ = k,
®(c0) = 0}, modulo multiplication by complex scalars of length 1. The
monopole associated to the rational function Z,- exp (i) » A;/(z—a;) with
AieR.y,a;€C, represents k lumps, centered at approximately (a;, ;)
e R3 = H3, with relative phase factors exp (i(ct;, — o;,)).

4) Monopoles arising from Riemannian curvature. If X is a oriented
Riemannian 4-manifold then one can write the curvature tensor R: A% — A?
. [W+ + (R/3) B

B* W_ + (Ry/3)
@ A2, in which B equals the Ricci curvature and W, the Weyl tensor.

If X is a conformally flat spin manifold with a metric of zero scalar curvature

:| relative to the decomposition A? = A2

B
:|. It follows that the connection

then this curvature tensor equals
1 [B* 0
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on the spin bundle S, is anti-self-dual. Recall (see § 3) that for I" Fuchsian,
extended Fuchsian or a suitable Schottky group X admits such a metric.
The connection on S, is a monopole because the metrics are S'-invariant.
The mass(es) is (are) 1 by proposition 2.2, and the charges k; equal g — 1,
where g is the genus of the fixed surface(s). Choosing a different spin
structure amounts to tensoring the bundle with a 2-torsion element in
Repr (n,(M), S'), compare 2).

In section 7 we shall come to grips with explicit formulae for nontrivial
monopoles on certain handlebodies. In Braam-Hurtubise [11] the moduli
spaces of monopoles on a solid torus are investigated in considerable detail.
A general existence theory for monopoles on hyperbolic manifolds has been
developed in Braam [10].

§ 6. TWISTOR SPACES

To a conformally flat oriented 4-manifold X there are naturally associated
two complex manifolds Z, and Z_, the twistor spaces of X. Applying our
construction of §2 we thus get twistor spaces for hyperbolic 3-manifolds.
It will be shown here that these carry a lot of geometric information
associated to the 3-manifold M, such as the complete geodesic flow. Also they
allow for a description of monopoles through holomorphic geometry. For the
rest of this section let X be the conformal compactification of M x S2,
with M a hyperbolic 3-manifold H3*/T as in §2. We shall state those
properties of Z. that we will need, and refer to Atiyah [1] and Atiyah-
Hitchin-Singer [5] for proofs and more details. The general line of thought
in this section is very similar to that of Hitchin [20] and Atiyah [2].

If §,(S_) is the spin bundle of positive (negative) chirality on X,
then Z ,(Z_) can be realised as the CP!-bundles over X :

P(S.)—> X (P(S.)—X),

where P( ) denotes projectivization of vectorbundles. A remarkable fact is
that Z, and Z_ are complex manifolds with a complex structure encoded in
the conformal structure of X. However, the twistor spaces are only Kéhler
if X =S8%* or X = CP? which in our case results in T — {e} (see
Hitchin [197]). There is an orientation reversing isometry of X arising from
conjugation of the circles. This interchanges the two spin bundles and makes
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