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ISOCLINIC n-PLANES IN Rln AND THE HOPF-STEENROD
SPHERE BUNDLES S2"-1 -> 5", n 2, 4, 8

by Yung-Chow Wong and Kam-Ping Mok

0. Introduction

The construction of the sphere bundles 52n~1 -> 5", n — 2,4,8, by

N. Steenrod was accomplished in an ingenious but rather roundabout way,

using the famous Hopf maps and the systems of complex numbers, quaternions
and Cayley numbers (cf. Hopf [2], Steenrod [5, pp. 105-110] and Hilton
[1, pp. 51-55]). In this paper, we show how the theory of mutually isoclinic

n-planes in a real Euclidean 2n-space R2n as developed by Wong in [8, 9]
enables us to reconstruct these sphere bundles in a more natural manner

by working strictly within the field of real numbers and giving the three

cases n 2,4, 8 a more unified treatment. In addition, we prove that
the bundle group 0(8) of the Hopf-Steenrod sphere bundle 515 58 can
be replaced by 50(8) but not by any subgroup of 50(8).

In § 1, we recall certain results on maximal sets of mutually isoclinic

n-planes in Rln that motivated our investigation. In § 2, we confine ourselves

to the cases n 2, 4, 8, and prove some results that will be used later.
In § 3, we construct three sphere bundles by using maximal sets of mutually
isoclinic n-planes in R2n. In § 4, we give a unified and explicit formulation
of the three Hopf-Steenrod sphere bundles, using as Steenrod did the Hopf
maps and systems of complex numbers, quaternions and Cayley numbers. In
§ 5, we prove that the Hopf maps and maximal sets of mutually isoclinic
n-planes in R2", n 2, 4, 8, are equivalent concepts, and that the reformulated
Hopf-Steenrod sphere bundles described in § 4 are topologically essentially
the same as the sphere bundles constructed in § 3. The paper ends with two
appendices in which we explain the operations of Cayley numbers, and give
a direct proof that for n 2, 4, or 8, the n-planes in R2n containing the
Hopf fibers of 52"-1 are mutually isoclinic n-planes.

In a continuation of this paper being prepared, we shall show that
the image of the Hopf fibers of 52""1, n 2,4, or 8, under an inversion
in R2n has some very interesting properties which include those recently
found by J. B. Wilker [7] for the case n 2.
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1. Some results on isoclinic h-planes in R2n

By a Euclidean (vector) m-space Rm, where m is a positive integer,
we mean an m-dimensional vector space provided with a positive definite
inner product. An r-plane (l^r^m— 1) in Rm is an r-dimensional vector
subspace of Rm provided with the induced inner product. In Rm, length of
a vector, angle between two vectors, orthogonality between a /c-plane and

an r-plane, (orthogonal) projection of a vector on an r-plane, orthonormal
bases and rectangular coordinates are defined in the usual way.

In an R2n, let A, B be any two n-planes. Then we say that A is

isoclinic with B at angle 0 if the angle between every nonzero vector in A
and its projection on B is always equal to 0. It turns out that if A is

isoclinic with B at angle 0, then B is isoclinic with A at the same angle 0.

Therefore, in this case, we shall say that A and B are isoclinic at angle 0,

or simply, A and B are isoclinic.
A set <I> of n-planes in R2n is said to be a maximal set of mutually

isoclinic n-planes if every pair of n-planes in ® are isoclinic and O is not
contained in a larger set of mutually isoclinic n-planes. It is easy to see from
definition that if A is isoclinic with B at angle 0, then its orthogonal

K
complement A1 is isoclinic with B at angle — — 0. Consequently, if <D is

any maximal set of mutually isoclinic n-planes in R2n and A e <P, then
A1e<D.

In his memoir [8] Wong determined, for each n, the dimensions of the

maximal sets of mutually isoclinic n-planes in R2n, the number of non-
congruent maximal sets of a given dimension, and explicit equations of the

n-planes in any maximal set of mutually isoclinic n-planes containing a

given n-plane.

In the following, we summarize some of his results related to the problem
studied in this paper.

Theorem 1.1. (Wong [8, pp. 25-26]). In R2n provided with a rectangular
coordinate system (x, y) ([xx x„], [xn + 1 x2n% any maximal set $
of mutually isoclinic n-planes containing the n-plane O : y 0 (and
consequently, also the n-plane OL:x 0) is congruent to the set of n-planes

with equations
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