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correspond to the coordinate transformations t tB(X)/N(k)1/2 in J> where

B(X) are the matrices given in (1.7) in Theorem 1.6. By Theorem 2.5,

the elements B(X)/N(X)112 of SO(4) form a subgroup isomorphic with S3.

Therefore, the bundle group 0(4) in <9% can be replaced by S3. Similarly,
the bundle group 0(2) in can be replaced by S1. With these

observations, we can now prove the following theorem by proceeding as in
the proof of Theorem 5.3.

Theorem 5.4. The representative coordinate bundles constructed in § 4 for
the sphere bundles XTXT 2 and with bundle groups S1 and S3

respectively, are topologically the same as the representative coordinate bundles

constructed in § 3 for the sphere bundles J2 an& <$4 > respectively.

Finally, we remark that representative coordinate bundles of the bundles

STSTn in Theorem 4.2 are topologically essentially the same as the
representative coordinate bundles of the bundles JSTn in Theorem 3.2.

Appendix 1. The Cayley numbers

The Cayley numbers, denoted by X, Y, Z, W, etc. are ordered pairs
(q1, q2) of quaternions subject to the rules and having the properties listed

below. The set of all Cayley numbers, therefore, forms a (non-commutative
and non-associative) real division algebra. No proof of the properties will be

given as they can all be checked by direct computations.

(1) The addition is defined by

(.11,12) +(h+i'i, Qz+q'z)-

The zero is 0 (0, 0).

(2) The multiplication is defined by

(4I>42)(4'I,4 2) (4i4'I-4

where q'*, q'* are respectively the conjugates of (the quaternions) q\^q'2-
The (two-sided) unit is 1 (1,0).

(3) Multiplication is

(i) distributive with respect to addition, i.e.,

(X+Y)W XW + YW, W(X+Y) WX + WY ;
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(ii) not commutative, i.e., generally, AY # 7A (but see (4) (iv) below);

(iii) not associative, i.e., generally, ± X(YW) (but see (7) below).

(4) The realpan of X m(q,.q2) is Re X (Re s Re is said to

be real if X Re X :i.e., (q^q2) is real iff ql is real and q2 0.

(i) Re (X+ Y)Re (X) +Re Y).

(ii) Re (AY) Re(YA).

(iii) Re (CA) 0 for all Ximpliesthat 0.

(iv) CXXC for all A iff Cis real. In this case, C (cx, 0), where

real, and CA (Ci^i, c^-,) AC.

(5) The conjugateof A [qt,q2)isA* (qf. —q2)-

(i) (A + T)* A* + Y*,

(ii) (AT)* Y*X*.

(iii) A* A iff A is real.

(6) The norm of A is the non-negative real number .Vl.Vl AA*, which is

also equal to A*A. The length of A is the non-negative real number

I A I A(A)1 2 (AA*)1 2.

(i) Ar(A) 0 iff A 0.

(ii) If A 0, then A"1 s A* A(A) is a right and left inverse of A.

(iii) A7(AY) X(X)X{Y). It follows from this that AT 0iffA 0

or Y 0.

(7) Though multiplication is generally non-associative,

(i) (A 7)7* A(YY*).

(ii) If 7 # 0, then (A7)7_1 A 7_1(7A).

(iii) Re((A7)IT) Re(A (YW)).

Appendix 2. The Hopf fibering and mutu.ally isoclinic planes

At the beginning of § 4, we described how H. Hopf obtained his fibering
of S2"-1 by S"-1 over S", n 2,4, or 8, by intersecting the unit sphere
S2"-1 in R2n Q„ x Qn with the 2„-lines 7 CA and A 0. In
Theorem 5.2, we proved that the Hopf fibering and maximal set of mutually
isoclinic n-planes in R2n are equivalent concepts. Here we prove, directly, the


	Appendix 1. The Cayley numbers

