

|                     |                                                                                                                                               |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Zeitschrift:</b> | L'Enseignement Mathématique                                                                                                                   |
| <b>Herausgeber:</b> | Commission Internationale de l'Enseignement Mathématique                                                                                      |
| <b>Band:</b>        | 34 (1988)                                                                                                                                     |
| <b>Heft:</b>        | 1-2: L'ENSEIGNEMENT MATHÉMATIQUE                                                                                                              |
| <b>Artikel:</b>     | ISOCLINIC $n$ -PLANES IN $\mathbb{R}^{2n}$ AND THE HOPF-STEENROD SPHERE BUNDLES $\mathbb{S}^{2n-1} \rightarrow \mathbb{S}^n$ , $n=2,4,8$      |
| <b>Autor:</b>       | Wong, Yung-Chow / Mok, Kam-Ping                                                                                                               |
| <b>Kapitel:</b>     | 3. The sphere bundles $\mathbb{S}^{2n-1} \rightarrow \Phi_n$ , $n=2,4,8$ , WITH FIBERS ON MUTUALLY ISOCLINIC $n$ -PLANES IN $\mathbb{R}^{2n}$ |
| <b>DOI:</b>         | <a href="https://doi.org/10.5169/seals-56593">https://doi.org/10.5169/seals-56593</a>                                                         |

### Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. [Mehr erfahren](#)

### Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. [En savoir plus](#)

### Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. [Find out more](#)

**Download PDF:** 28.01.2026

**ETH-Bibliothek Zürich, E-Periodica, <https://www.e-periodica.ch>**

$I = f(0)$  of  $G$ , then the velocity vector  $f'(0)$  of this curve at  $I$  is an element of  $g$ . Now

$$t \rightarrow f_i(t) \equiv (\cos t)I + (\sin t)B_i \quad (i=1, \dots, 7)$$

are obviously curves in  $G$  such that  $f_i(0) = I$  and  $f'_i(0) = B_i$ . Therefore,  $B_i$  are all elements of  $g$ .

Since  $g$  is a Lie subalgebra of  $o(8)$  and  $B_i \in g$ , the Lie products  $[B_i, B_j] = B_i B_j - B_j B_i = 2B_i B_j$ , where  $i, j = 1, \dots, 7$ , and  $i < j$ , are all in  $g$ .

We have thus proved that the 28 linearly independent skew-symmetric matrices,  $B_i, B_i B_j$  all belong to  $g \subset o(8)$ . Since  $o(8)$  is the Lie algebra of all skew-symmetric matrices of order 8 and is therefore of dimension 28,  $g$  coincides with  $o(8)$ . This completes the proof of Theorem 2.6.

### 3. THE SPHERE BUNDLES $S^{2n-1} \rightarrow \Phi_n$ , $n = 2, 4$ , OR $8$ , WITH FIBERS ON MUTUALLY ISOCLINIC $n$ -PLANES IN $R^{2n}$

In  $R^{2n}$ ,  $n = 2, 4$ , or  $8$ , provided with rectangular coordinate system  $(x, y)$ , let  $S^{2n-1}$  be the unit sphere and  $\Phi_n$  the maximal set of mutually isoclinic  $n$ -planes  $\{x = 0, y = xB(\lambda)\}$  defined in Theorem 1.6. Then with the preparations we have made in § 2, we can now prove

**THEOREM 3.1.** *In  $R^{2n}$ ,  $n = 2, 4$ , or  $8$ , the  $n$ -planes in the maximal set  $\Phi_n$  of mutually isoclinic  $n$ -planes slice the unit sphere  $S^{2n-1}$  into a fiber bundle*

$$\mathcal{I}_n = (S^{2n-1}, \Phi_n, \pi, S^{n-1}, G_n),$$

with base space  $\Phi_n$ , projection  $\pi$ , fiber  $S^{n-1}$  and group  $G_n$ , where  $G_2 = S^1$ ,  $G_4 = S^3$ , and  $G_8 = SO(8)$ .

*Proof.* We prove by exhibiting all the ingredients of a representative coordinate bundle.

- (1) The bundle space  $S^{2n-1}$  has the equation  $xx^T + yy^T = 1$  in  $R^{2n}$ .
- (2) The base space  $\Phi_n$  is covered by the two coordinate systems

$$(2.5) \quad (\Phi_n \setminus \mathbf{O}^\perp, \lambda), \quad (\Phi_n \setminus \mathbf{O}, \mu)$$

as in the proof of Theorem 2.3, where  $\mathbf{O}^\perp$  is the  $n$ -plane  $x = 0$ ,  $\mathbf{O}$  is the  $n$ -plane  $y = 0$ ,  $\lambda$  is the parameter in the equation  $y = xB(\lambda)$  of an  $n$ -plane in  $\Phi_n \setminus \mathbf{O}^\perp$ , and  $\mu$  is the parameter in the equation  $x = yB(\mu)^T$  of

an  $n$ -plane in  $\Phi_n \setminus \mathbf{O}$ . Moreover, for an  $n$ -plane in the intersection  $\Phi_n \setminus \{\mathbf{O}^\perp, \mathbf{O}\}$  of the two coordinate neighborhoods, its two coordinates  $\lambda$  and  $\mu$ , both nonzero, are related by

$$(2.6) \quad \mu = \lambda/N(\lambda), \quad \text{or equivalently,} \quad \lambda = \mu/N(\mu).$$

(3) The projection  $\pi: S^{2n-1} \rightarrow \Phi_n$  is the map which sends a point of  $S^{2n-1}$  to the unique  $n$ -plane in  $\Phi_n$  containing this point (cf. Theorems 1.2 and 1.4).

To see that  $\pi$  is continuous, we let

$$V_1 = \{(x, y) \in S^{2n-1} : x \neq 0\}, \quad V_2 = \{(x, y) \in S^{2n-1} : y \neq 0\}.$$

Then  $\{V_1, V_2\}$  is an open cover of  $S^{2n-1}$ , and  $\pi(V_1) = \Phi_n \setminus \mathbf{O}^\perp$ ,  $\pi(V_2) = \Phi_n \setminus \mathbf{O}$ . Now by Theorem 2.2, the restriction  $\pi|V_1$  of  $\pi$  to  $V_1$  sends a point  $(u, v) \in V_1 \subset S^{2n-1}$  to the  $n$ -plane  $y = xB(\lambda)$  in  $\Phi_n \setminus \mathbf{O}^\perp$  with coordinate

$$\lambda = (\lambda_0, \lambda_1, \dots, \lambda_{n-1}) = (vu^T, -vB_1u^T, \dots, -vB_{n-1}u^T)/(uu^T).$$

This shows that  $\pi|V_1$  is continuous. Similarly for  $\pi|V_2$ . Therefore,  $\pi$  is continuous.

(4) The fiber  $S^{n-1}$  is the unit sphere  $tt^T = 1$  in  $R^n$ . Here,  $t = [t_1 \dots t_n]$  is a rectangular coordinate system in  $R^n$ .

(5) The group  $G_n$  of the bundle is  $G_2 = S^1 = SO(2)$ ,  $G_4 = S^3 = SO(4)$ , or  $G_8 = SO(8)$ , for  $n = 2, 4$ , or  $8$ , respectively.

To see that  $G_n$  acts on  $S^{n-1}$  effectively, we need only observe that if  $M$  is an element of  $G_n \subset SO(n)$  such that  $tM = t$  for all  $t$  with  $tt^T = 1$ , then  $M = I$ .

(6) With the coordinate systems (2.5) covering the base space  $\Phi_n$  as described in (2), the coordinate functions are the maps

$$\begin{aligned} \phi_1: (\Phi_n \setminus \mathbf{O}^\perp) \times S^{n-1} &\rightarrow \pi^{-1}(\Phi_n \setminus \mathbf{O}^\perp), \\ \phi_2: (\Phi_n \setminus \mathbf{O}) \times S^{n-1} &\rightarrow \pi^{-1}(\Phi_n \setminus \mathbf{O}), \end{aligned}$$

defined respectively by

$$(3.1) \quad \phi_1(\lambda, t) = (x, y) = \frac{(t, tB(\lambda))}{\sqrt{1 + N(\lambda)}},$$

$$(3.2) \quad \phi_2(\mu, t') = (x', y') = \frac{(t'B(\mu)^T, t')}{\sqrt{1 + N(\mu)}}.$$

Here, the  $\lambda$  in  $\phi_1(\lambda, t)$  denotes the  $n$ -plane in  $\Phi_n \setminus \mathbf{O}^\perp$  with equation  $y = xB(\lambda)$ , and the  $\mu$  in  $\phi_2(\mu, t')$  denotes the  $n$ -plane in  $\Phi_n \setminus \mathbf{O}$  with equation  $x = yB(\mu)^T$ .

To justify our definition, we must show that  $\phi_1, \phi_2$  are homeomorphisms. Obviously, they are continuous maps. To find  $\phi_1^{-1}$  which sends  $(x, y)$  to  $(\lambda, t)$ , we first note that  $x \neq 0$  (cf. (3)) and the last equation (3.1) is equivalent to

$$(3.3) \quad y = xB(\lambda), \quad t = x\sqrt{1 + N(\lambda)}.$$

Now, equation (3.3)<sub>2</sub> gives  $t$  as a continuous function of  $x$  and  $\lambda$ , and by Theorem 2.2, equation (3.3)<sub>1</sub> determines  $\lambda$  as a continuous function of  $x$  and  $y$ . Therefore,  $\lambda$  and  $t$  are continuous functions of  $x$  and  $y$ . This proves that  $\phi_1^{-1}$  is well defined and is continuous, and consequently,  $\phi_1$  is a homeomorphism. Similarly for  $\phi_2$ .

(7) The projection  $\pi$  and the coordinate functions  $\phi_1, \phi_2$  as defined in (3) and (6) satisfy the conditions

$$(3.4) \quad (\pi \circ \phi_1)(\lambda, t) = \lambda, \quad (\pi \circ \phi_2)(\mu, t') = \mu.$$

In fact, from (3.1) and (3.3), we see that the point  $(x, y) = \phi_1(\lambda, t)$  of  $S^{2n-1}$  lies on the  $n$ -plane  $y = xB(\lambda)$ . Therefore, by (3),  $\pi(x, y)$  is the  $n$ -plane  $y = xB(\lambda)$  in  $\Phi_n \setminus \mathbf{O}^\perp$  with coordinate  $\lambda$ . This proves (3.4)<sub>1</sub>. Similarly for (3.4)<sub>2</sub>.

(8) Let  $\mathbf{B}$  be any fixed  $n$ -plane in  $\Phi_n \setminus \{\mathbf{O}^\perp, \mathbf{O}\}$  with coordinate  $\lambda$  in  $\Phi_n \setminus \mathbf{O}^\perp$  and coordinate  $\mu$  in  $\Phi_n \setminus \mathbf{O}$ , and let  $\phi_{1,\mathbf{B}}$  and  $\phi_{2,\mathbf{B}}$  be the two homeomorphisms  $S^{n-1} \rightarrow \pi^{-1}(\mathbf{B}) \subset S^{2n-1}$  defined by

$$\phi_{1,\mathbf{B}}(t) = \phi_1(\lambda, t), \quad \phi_{2,\mathbf{B}}(t') = \phi_2(\mu, t').$$

Then  $\phi_{2,\mathbf{B}}^{-1} \circ \phi_{1,\mathbf{B}}$  is a homeomorphism in the fiber  $S^{n-1}$ , called a coordinate transformation.

We now show that this coordinate transformation coincides with the action of an element of the group  $G_n$ . Suppose that  $t$  is any point of  $S^{n-1}$  and

$$(\phi_{2,\mathbf{B}}^{-1} \circ \phi_{1,\mathbf{B}})(t) = t' \in S^{n-1}.$$

Then

$$\phi_{1,\mathbf{B}}(t) = \phi_{2,\mathbf{B}}(t'), \quad \text{i.e.,} \quad \phi_1(\lambda, t) = \phi_2(\mu, t').$$

Now, by (3.1) and (3.2), this equation is the same as

$$(3.5) \quad \frac{(t, tB(\lambda))}{\sqrt{1 + N(\lambda)}} = \frac{(t'B(\mu)^T, t')}{\sqrt{1 + N(\mu)}}.$$

Since the two coordinates  $\lambda, \mu$  of the  $n$ -plane  $\mathbf{B}$  satisfy the conditions

$$\begin{aligned} \lambda \neq 0, \quad \mu \neq 0, \quad B(\lambda)^{-1} &= B(\mu)^T, \\ \mu = \lambda/N(\lambda), \quad \lambda = \mu/N(\mu), \quad N(\lambda)N(\mu) &= 1, \end{aligned}$$

we can easily verify that equation (3.5) is equivalent to

$$(3.6) \quad t' = tB(\lambda)/N(\lambda)^{1/2},$$

and this, on putting  $\lambda' = \lambda/N(\lambda)^{1/2}$ , we can write as

$$(3.6') \quad t' = tB(\lambda'), \quad \text{where} \quad N(\lambda') = 1.$$

The transformation (3.6), or equivalently, (3.6'), is then a coordinate transformation in the fiber  $S^{n-1}$ . Now, by Theorems 2.4, 2.5 and 2.6,  $G_n$  is the subgroup of  $SO(n)$  generated by the set of elements  $\{B(\lambda'): N(\lambda') = 1\}$  of  $SO(n)$ . Therefore, the coordinate transformation (3.6') coincides with the action of an element of  $G_n$ .

(9) Finally, we see from (3.6) that the map

$$(\Phi_n \setminus \mathbf{O}^\perp) \cap (\Phi_n \setminus \mathbf{O}) = \Phi_n \setminus \{\mathbf{O}^\perp, \mathbf{O}\} \rightarrow G_n,$$

defined by  $\mathbf{B} \rightarrow \phi_{2, \mathbf{B}}^{-1} \circ \phi_{1, \mathbf{B}}$ , can be expressed in coordinates as

$$\lambda \rightarrow B(\lambda)/N(\lambda)^{1/2}.$$

Therefore, it is continuous.

Thus, with the ingredients (1)-(9) exhibited above, we have constructed a representative coordinate bundle of the sphere bundle  $\mathcal{I}_n$  in Theorem 3.1.

**REMARK 1.** In Theorem 2.3, we have shown that  $\Phi_n$  is diffeomorphic with  $S^n$ . Therefore, the three sphere bundles  $\mathcal{I}_n$  in Theorem 3.1 are topologically the same as some sphere bundles  $S^{2n-1} \rightarrow S^n$  by  $S^{n-1}$ . In fact, we shall prove in § 5 that they are topologically essentially the same as the three Hopf-Steenrod sphere bundles.

**REMARK 2.** The coordinate functions  $\phi_1$  and  $\phi_2$  which we used in (6) were not accidentally come by. They were obtained in the following way. By definition, the coordinate function

$$\phi_1 : (\Phi_n \setminus \mathbf{O}^\perp) \times S^{n-1} \rightarrow \pi^{-1}(\Phi_n \setminus \mathbf{O}^\perp) \subset S^{2n-1}$$

is a homeomorphism sending

$$(\lambda, t) \rightarrow (x, y) \in \pi^{-1}(\Phi_n \setminus \mathbf{O}^\perp),$$

so that  $x, y$  are some continuous functions of  $\lambda$  and  $t$ , and  $\lambda, t$  are some continuous functions of  $x$  and  $y$ . These functions are not arbitrary, but should satisfy certain conditions. First, they must be such that  $(\pi \circ \phi_1)(\lambda, t) = \pi(x, y) = \lambda$  (cf. (7)). Therefore,  $x$  and  $y$  must be related by

$$(3.7) \quad y = xB(\lambda).$$

Secondly, since  $(x, y) \in S^{2n-1}$ , we must have  $xx^T + yy^T = 1$ . Furthermore, because of (3.7) and Theorem 2.1 (i),

$$yy^T = xB(\lambda) (xB(\lambda))^T = xx^T N(\lambda).$$

Therefore,

$$(3.8) \quad xx^T = (1 + N(\lambda))^{-1}.$$

Finally, since  $t \in S^{n-1}$ , we must have

$$(3.9) \quad tt^T = 1.$$

Conditions (3.7), (3.8) and (3.9) suggest that the simplest possible choice of the continuous functions  $x, y$  of  $\lambda$  and  $t$  which define our  $\phi_1$  are those given in (3.1). Similarly for  $\phi_2$ .

With slight modification, we can prove

**THEOREM 3.2.** *In  $R^{2n}$ ,  $n = 2, 4$ , or  $8$ , the  $n$ -planes in the maximal set  $\Phi_n$  of mutually isoclinic  $n$ -planes slice the space  $R^{2n} \setminus O$  into a fiber bundle*

$$\mathcal{IL}_n = (R^{2n} \setminus O, \Phi_n, \pi, R^n \setminus O, G_n \times \rho_n)$$

*with base space  $\Phi_n$ , projection  $\pi$ , fiber  $R^n \setminus O$  and group  $G_n \times \rho_n$ , where  $G_2 = S^1$ ,  $G_4 = S^3$  and  $G_8 = SO(8)$ , and  $\rho_n$  is the group of similitudes in  $R^n \setminus O$ .*

Here, by a similitude in  $R^n \setminus O$ , we mean a transformation of the form  $t \rightarrow t\rho$ , where  $\rho$  is a positive real number.

*Proof.* The proof is similar to that of Theorem 3.1 but with the following difference. The bundle space is  $R^{2n} \setminus O$  provided with a rectangular coordinate system  $(x, y)$ , and the fiber is  $R^n \setminus O$  provided with a rectangular coordinate

system  $t$ ; whereas, the base space  $\Phi_n$ , with coordinate systems (2.5), is the same as that in the bundle  $\mathcal{I}_n$ . The projection  $\pi$  is the map which sends a point of  $R^{2n} \setminus O$  to the (unique)  $n$ -plane in  $\Phi_n$  containing this point, and the two coordinate functions

$$\begin{aligned}\phi_1 : (\Phi_n \setminus \mathbf{O}^\perp) \times (R^n \setminus O) &\rightarrow \pi^{-1}(\Phi_n \setminus \mathbf{O}^\perp), \\ \phi_2 : (\Phi_n \setminus \mathbf{O}) \times (R^n \setminus O) &\rightarrow \pi^{-1}(\Phi_n \setminus \mathbf{O})\end{aligned}$$

are defined respectively by

$$(3.10) \quad \phi_1(\lambda, t) = (x, y) = (t, tB(\lambda)),$$

$$(3.11) \quad \phi_2(\mu, t') = (x', y') = (t'B(\mu)^T, t').$$

It readily follows from (3.10) and (3.11) that, for any fixed  $\mathbf{B} \in \Phi_n \setminus \{\mathbf{O}^\perp, \mathbf{O}\}$  with coordinate  $\lambda$  in  $\Phi_n \setminus \mathbf{O}^\perp$ , the coordinate transformation  $\phi_{2, \mathbf{B}}^{-1} \circ \phi_{1, \mathbf{B}}$  in the fiber  $R^n \setminus O$  sends  $t$  to

$$(3.12) \quad t' = tB(\lambda),$$

which, because  $\lambda \neq 0$ , can be written

$$(3.12') \quad t' = (tB(\lambda)/N(\lambda)^{1/2})N(\lambda)^{1/2}.$$

Since  $B(\lambda)/N(\lambda)^{1/2} \in G_n$  and  $t \rightarrow tN(\lambda)^{1/2}$  is a similitude in  $R^n \setminus O$ , (3.12') shows that the coordinate transformation  $t \rightarrow t'$  coincides with the action of an element of  $G_n \times \rho_n$ . Finally, by (3.12), the map  $\Phi_n \setminus \{\mathbf{O}^\perp, \mathbf{O}\} \rightarrow G_n \times \rho_n$  defined by  $\mathbf{B} \rightarrow \phi_{2, \mathbf{B}}^{-1} \circ \phi_{1, \mathbf{B}}$  can be expressed as  $\lambda \rightarrow B(\lambda)$ , and is therefore continuous.

The relationship between the bundle  $\mathcal{I}_n$  in Theorem 3.1 and the bundle  $\mathcal{IL}_n$  in Theorem 3.2 is described in the following

### THEOREM 3.3.

#### (i) *The bundle*

$$\mathcal{IL}_n = (R^{2n} \setminus O, \Phi_n, \pi, R^n \setminus O, G_n \times \rho_n)$$

is equivalent in  $G_n \times \rho_n$  to the bundle

$$\mathcal{IL}'_n = (R^{2n} \setminus O, \Phi_n, \pi, R^n \setminus O, G_n)$$

with group  $G_n$ .

#### (ii) *The bundle*

$$\mathcal{I}_n = (S^{2n-1}, \Phi_n, \pi, S^{n-1}, G_n)$$

is a subbundle of the bundle  $\mathcal{IL}'_n$  in (i).

*Proof.* (i) This is an immediate consequence of a result of Steenrod in [5, p. 56, § 12.6]. In fact, from (6) and (8) in the proof of Theorem 3.1, we easily see that the coordinate functions

$$\begin{aligned}\phi'_1: (\Phi_n \setminus \mathbf{O}^\perp) \times (R^n \setminus O) &\rightarrow \pi^{-1}(\Phi_n \setminus \mathbf{O}^\perp), \\ \phi'_2: (\Phi_n \setminus \mathbf{O}) \times (R^n \setminus O) &\rightarrow \pi^{-1}(\Phi_n \setminus \mathbf{O})\end{aligned}$$

of  $\mathcal{IL}'_n$  can be defined respectively by

$$\begin{aligned}\phi'_1(\lambda, t) &= \frac{(t, tB(\lambda))}{\sqrt{1 + N(\lambda)}}, \\ \phi'_2(\mu, t') &= \frac{(t'B(\mu)^T, t')}{\sqrt{1 + N(\mu)}},\end{aligned}$$

and that for any fixed element  $\mathbf{B} \in \Phi_n \setminus \{\mathbf{O}^\perp, \mathbf{O}\}$ , the coordinate transformation  $\phi'^{-1}_{2, \mathbf{B}} \circ \phi'_1, \mathbf{B}$  in  $R^n \setminus O$  is  $t \rightarrow t' = tB(\lambda)/N(\lambda)^{1/2}$ , and thus it coincides with the action of an element of  $G_n$ .

(ii) Obviously,  $S^{n-1} \subset R^n \setminus O$  is invariant under  $G_n$ . Therefore, according to a result of Steenrod [5, p. 24, 2nd paragraph], there is a unique subbundle of  $\mathcal{IL}'_n$  with fiber  $S^{n-1}$  and the same coordinate neighborhoods and coordinate transformations as  $\mathcal{IL}'_n$ . Comparison will show that this subbundle is precisely our  $\mathcal{I}_n$ .

#### 4. A UNIFIED TREATMENT OF THE THREE HOPF-STEENROD BUNDLES

In the early 30's, H. Hopf [2, 3], using complex numbers, quaternions, and Cayley numbers, discovered his fiberings of  $S^{2n-1}$  by  $S^{n-1}$  over  $S^n$ ,  $n = 2, 4, 8$ . Later in 1950, N. Steenrod [5, pp. 105-110] used these fiberings of Hopf to construct three sphere bundles, which we here call the *Hopf-Steenrod bundles*. But he did this in a roundabout way. For the two cases  $n = 2, 4$ , he obtained the bundles  $S^3 \rightarrow S^2$  and  $S^7 \rightarrow S^4$  as special cases of a general result on "sphere as a bundle over a projective space". For the case  $n = 8$ , he obtained the bundle  $S^{15} \rightarrow S^8$  as a subbundle of a linear bundle which he constructed by using Cayley numbers. This being the case, he did not need to define the coordinate functions for his bundles. Still later in 1952, P.J. Hilton [1, pp. 52-55] showed, in a direct manner, that the Hopf fiberings  $S^{2n-1} \rightarrow S^n$ ,  $n = 2, 4, 8$ , are fiber spaces by exhibiting some sets of coordinate functions. But he did not calculate the coordinate