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[ = f(0) of G, then the velocity vector f'(0) of this curve at I is an
element of g. Now

t > fi(t) = (cos I + (sin B, (i=1,..,7)

are obviously curves in G such that £;(0) = I and f;(0) = B;. Therefore,
B; are all elements of g.

Since g is a Lie subalgebra of o(8) and B; € g, the Lie products [B;, B;]
= B;B; — B;B; = 2B;B;, where i,j = 1,..,7,and i < j, are all in g.

We have thus proved that the 28 linearly independent skew-symmetric
matrices, B;, B; B; all belong to g = o(8). Since o(8) is the Lie algebra of all
skew-symmetric matrices of order 8 and is therefore of dimension 28,

g coincides with o(8). This completes the proof of Theorem 2.6.

3. THE SPHERE BUNDLES S*" ! - @, , n = 2,4, OR 8,
WITH FIBERS ON MUTUALLY ISOCLINIC n-PLANES IN R?"

In R* n = 2,4, or 8, provided with rectangular coordinate system
(x,y), let S*"~1 be the unit sphere and @, the maximal set of mutually
isoclinic n-planes {x = 0, y = xB(A\)} defined in Theorem 1.6. Then with
the preparations we have made in § 2, we can now prove

THEOREM 3.1. In R*, n = 2,4, or 8, the n-planes in the maximal set

D, of mutually isoclinic n-planes slice the unit sphere S*"~' into a fiber
bundle

fn = (SZTI—I’(DH,T[, Sn_l’ Gn)’
with base space ®,, projection m, fiber S""' and group G,, where
Gz = Sl, G4 = S3, and Gg = SO(8).

Proof. We prove by exhibiting all the ingredients of a representative
coordinate bundle.

(1) The bundle space S*"~! has the equation xx” + yy” = 1in R?"

(2) The base space @, is covered by the two coordinate systems
(2.5) (@,\0% %), (@,\0, p)

as in the proof of Theorem 2.3, where O+ is the n-plane x = 0, O is
the n-plane y = 0, A is the parameter in the equation y = xB(A) of an
n-plane in ®,\O%, and p is the parameter in the equation x — yB(w)* of
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an n-plane in ®,\O. Moreover, for an n-plane in the intersection ®,\{0*, O}
of the two coordinate neighborhoods, its two coordinates A and p, both
nonzero, are related by

(2.6) uw = A/N(A), orequivalently, A = pu/N(p).

(3) The projection w: S**~! — @, is the map which sends a point of
S?"~1 to the unique n-plane in ®, containing this point (cf. Theorems 1.2
and 1.4).

To see that 1 is continuous, we let
Vi=1{xyesS" tix£0}, V,=1{xyeS" 1.y+#0}.

Then {V,, V,} is an open cover of $*"~! and n(V,) = ®,\O%, n(V,) = ®,\O.
Now by Theorem 2.2, the restriction w|V,; of m to V; sends a point
(u,v)e V, = S*"°! to the n-plane y = xB(A) in ®,\O* with coordinate

A= (Mo, Apson Myoy) = (u”, —vByu’, .., —0B,_u")/(un)" .

This shows that wn| V', is continuous. Similarly for m|V,. Therefore, m is
continuous.

(4) The fiber S"~ ! is the unit sphere tt* = 1 in R". Here, t = [t; ... t,]
is a rectangular coordinate system in R".

(5) The group G, of the bundle is G, = S! = SO(2), G, = S* = SO(4),
or Gg = SO(8), for n = 2, 4, or §, respectively.

To see that G, acts on S" ' effectively, we need only observe that if
M is an element of G, = SO(n) such that tM = ¢t for all ¢t with ¢t = 1,
then M = [.

(6) With the coordinate systems (2.5) covering the base space ®, as
described in (2), the coordinate functions are the maps

(bl : ((Dn\ol) X Sn—l — Tc_l((bn\ol) »
(1)2: ((Dn\o) X Sn—l - n—l((Dn\\O) >

defined respectively by

(3.1) b D) = (ry) = L BR)

| o Y 1+ N
’B T 4

(3-2) Bt 1) = (¢, ) = LBWL0)

1+ N(w
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Here, the ) in &,(A, f) denotes the n-plane in @,\O" with equation
y = xB(A), and the p in ¢,(y, ') denotes the n-plane in ®,\O with equation
x = yB".

To justify our definition, we must show that ¢,, ¢, are homeomorphisms.
Obviously, they are continuous maps. To find ¢! which sends (x, y) to
(A, t), we first note that x # 0 (cf. (3) and the last equation (3.1) is
equivalent to

(3.3) y = xB\), t=x,/1+ NQM).

Now, equation (3.3), gives t as a continuous function of x and A, and
by Theorem 2.2, equation (3.3); determines A as a continuous function of
x and y. Therefore, A and ¢ are continuous functions of x and y. This
proves that ¢ ;' is well defined and is continuous, and consequently, ¢,
is 2 homeomorphism. Similarly for ¢,.

(7) The projection m and the coordinate functions ¢,, ¢, as defined
in (3) and (6) satisfy the conditions

(3.4) (med) (A1) = A, (mody) (1, t) = p.

In fact, from (3.1) and (3.3), we see that the point (x,y) = ¢,(A, t) of S !
lies on the n-plane y = xB(A). Therefore, by (3), m(x,y) is the n-plane

y = xB(}\) in ®,\O" with coordinate A. This proves (3.4);. Similarly for
(3.4),.

(8) Let B be any fixed n-plane in ®,\{O*, O} with coordinate A in
®,\O* and coordinate p in ®,\O, and let ¢, 5 and ¢, g be the two
homeomorphisms §"" ' — n~}(B) = S?"~ ! defined by

G1 () = &A1), by p(t) = by, 1).

 Then ¢ 5 8 ° ®; g is a homeomorphism in the fiber "~ 1, called a coordinate
transformation.

We now show that this coordinate transformation coincides with the
action of an element of the group G,. Suppose that t is any point of

S$"~1! and
((bz_,%lod)l,B) () =tes 1.
Then

by p(t) = &, 8(t), e, b, t) = &y, ).
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Now, by (3.1) and (3.2), this equation is the same as

(3.5) (t, tB())) _ (¢BWT, t)

J1I+ NN ST+ Nyw

Since the two coordinates A, u of the n-plane B satisfy the conditions

L#0, p#0, BM'=BR",
p=%NR), *=wNw, NMNW =1,

we can easily verify that equation (3.5) is equivalent to
(3.6) t' = tB(\)/N(W)Y?,

and this, on putting A’ = A/N(A)'/?, we can write as
(3.6) t" = tB(\), where NQ)=1.

The transformation (3.6), or equivalently, (3.6'), is then a coordinate trans-
. formation in the fiber S"~!. Now, by Theorems 2.4, 2.5 and 2.6, G, is the
subgroup of SO(n) generated by the set of elements {B(\): N(A') = 1} of
SO(n). Therefore, the coordinate transformation (3.6") coincides with the action
of an element of G, .

(9) Finally, we see from (3.6) that the map
(@,\0%) N (@,\0) = ¢,\{0", O} > G,,
defined by B — &5 3 ¢ g, can be expressed in coordinates as
A — BL)/N(L)2
Therefore, 1t 1s continuous. —

Thus, with the ingredients (1)-(9) exhibited above, we have constructed
a representative coordinate bundle of the sphere bundle .#, in Theorem 3.1.

REMARK 1. In Theorem 2.3, we have shown that ®, is diffeomorphic
with S". Therefore, the three sphere bundles .#, in Theorem 3.1 are topo-
logically the same as some sphere bundles $*"~! — S" by S"~ 1. In fact, we
shall prove in § 5 that they are topologically essentially the same as the
three Hopf-Steenrod sphere bundles.

REMARK 2. The coordinate functions ¢, and ¢, which we used in (6) were
not accidentally come by. They were obtained in the following way. By
definition, the coordinate function

-
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;1 (0,\0Y) x 571 > 17 H(@,\0Y) < §7
is 2 homeomorphism sending
A 1) = (x, y) e 1™ H(@,\O),

so that x, y are some continuous functions of A and ¢, and A, ¢t are some
continuous functions of x and y. These functions are not arbitrary, but should
satisfy certain conditions. First, they must be such that (woy) (A, 1)
= m(x, y) = M\ (cf. (7). Therefore, x and y must be related by

(3.7) y = xB().

Secondly, since (x, y) € §2"~ !, we must have xx” + yy’ = 1. Furthermore,
because of (3.7) and Theorem 2.1 (i),

yy* = xB(\) (xB\)"T = xx"N(A).
Therefore,
(3.8) xxT = (1+N(W) ™t .
Finally, since t € S"~ ', we must have
(3.9) it = 1.

Conditions (3.7), (3.8) and (3.9) suggest that the simplest possible choice
of the continuous functions x, y of A and ¢t which define our ¢; are those
given in (3.1). Similarly for ¢, .

With slight modification, we can prove

THEOREM 3.2. In R*", n = 2,4, or 8, the n-planes in the maximal set
®, of mutually isoclinic n-planes slice the space R*"\O into a fiber bundle

S, = (R*O0,0,,n, R"\O, G,xp,)

with base space ®,, projection m, fiber R™O and group G, x p,,
where G, =S', G, =8> and Gg = SO®), and p, is the group of
similitudes in  R™\ 0. |

Here, by a similitude in R™0, we mean a transformation of the form
t — tp, where p is a positive real number.

Proof. The proof is similar to that of Theorem 3.1 but with the following
difference. The bundle space is R*"\O provided with a rectangular coordinate
system (x, y), and the fiber is R"\O provided with a rectangular coordinate
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system t; whereas, the base space ®,, with coordinate systems (2.5), is the
same as that in the bundle .#,. The projection 7« is the map which sends a
point of R*\0 to the (unique) n-plane in @, containing this point, and the
two coordinate functions

¢1: (@,\0%) x (R\O0) - n~{(P,\0%),
¢,: (2,\0) x (R"\0) » ™ }(P,\0)
are defined respectively by
(3.10) o1k 1) = (x, y) = (¢, tB()
(3.11) b 1) = (¢, ¥) = ('BW", t).

It readily follows from (3.10) and (3.11) that, for any fixed B e ®,\{O"*, O}
with coordinate A in ®,\O", the coordinate transformation ¢; o ¢ g in
the fiber R"\O sends ¢ to

(3.12) t = tB(A),
which, because A # 0, can be written
(3.12) = (tB(?x)/N()\,)l/z)N(}.)l/z.

Since B(L)/N(MY? e G, and t — tN(A)'/? is a similitude in R™\ O, (3.12') shows
that the coordinate transformation t — t' coincides with the action of an
element of G, x p,. Finally, by (3.12), the map ®,\{O*, O} —» G, x p, defined
by B —> ¢ 5 5 ¢y gcan be expressed as A — B()), and is therefore continuous.

The relationship between the bundle .#, in Theorem 3.1 and the bundle
S L, in Theorem 3.2 is described in the following

THEOREM 3.3.
(i) The bundle
S, = (R*™O0,?,,n, R\O, G, % p,)

is equivalent in G, x p, to the bundle
SL = (R*\0,d,,n, R\O, G,)

with group G,,.
(i) The bundle
S, =(*"1Lo,n "G,

is a subbundle of the bundle £, in (i)
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Proof. (i) This is an immediate consequence of a result of Steenrod in
[5, p. 56, §12.6]. In fact, from (6) and (8) in the proof of Theorem 3.1,
we easily see that the coordinate functions

¢4 : (@,\04) x (R\0) » 1™ '(@,\0%),
¢4 (@,\0) x (R\O) » n~ (®,\0)
of # &' can be defined respectively by
t, tB(A)
ct)’l()\‘a t) = ( ) 5
1+ NQR)
(B, )

J1T+ Nw

and that for any fixed element B € ®,\{O*, O}, the coordinate transformation
SLod) gin RMN\O is t —» ¢ = tB(A)/N(M)?, and thus it cooincides with
the action of an element of G, .

G5, ) =

(i) Obviously, " ! = R™ O is invariant under G, . Therefore, according
to a result of Steenrod [5, p. 24, 2nd paragraph], there is a unique
subbundle of .#.# with fiber "~ ! and the same coordinate neighborhoods
and coordinate transformations as .#.%,. Comparison will show that this
subbundle is precisely our .#,.

4. A UNIFIED TREATMENT OF THE THREE HOPF-STEENROD BUNDLES

In the early 30’s, H. Hopf [2, 3], using complex numbers, quaternions,
and Cayley numbers, discovered his fiberings of $*"~! by S$"! over S,
n = 2,4, 8 Later in 1950, N. Steenrod [5, pp. 105-110] used these fiberings
of Hopf to construct three sphere bundles, which we here call the Hopf-
Steenrod bundles. But he did this in a roundabout way. For the two cases
n = 2,4, he obtained the bundles S — §? and §7 — S§* as special cases
of a general result on “sphere as a bundle over a projective space”. For
the case n = 8, he obtained the bundle S'° — S® as a subbundle of a linear
bundle which he constructed by using Cayley numbers. This being the case,
he did not need to define the coordinate functions for his bundles. Still
later in 1952, P.J. Hilton [1, pp. 52-55] showed, in a direct manner, that
the Hopf fiberings S**~* — S" n = 2,4, 8, are fiber spaces by exhibiting
some sets of coordinate functions. But he did not calculate the coordinate



	3. The sphère bundles $S^{2n-1} \rightarrow  \Phi_n, \quad n=2,4,or 8$, WITH FIBERS ON MUTUALLY ISOCLINIC n-PLANES IN $R^{2n}$

