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ON TORRES-TYPE RELATIONS
FOR THE ALEXANDER POLYNOMIALS OF LINKS

by V. G. TURAEV

§ 1. INTRODUCTION

The classical formula of Torres [5] relates the (first) Alexander polynomial
of a link K in S® with that of the sublink of K obtained by deleting
a component. The aim of the present paper is to establish a Torres-type
formula for Alexander polynomials of higher-dimensional links. We also
discuss analogous formulas for higher Alexander polynomials of links in S°.

An n-component link in the sphere S™ is an ordered collection of
n disjoint smooth imbedded oriented (m—2)-dimensional spheres in S™
With each odd-dimensional link K = S***! one associates a A,module
H,()Z), where A, is the Laurent polynomial ring Z[t,,t; % .. ¢,,t, %], X
is the exterior of K and X is the maximal abelian covering of X. The
module H,()Z) algebraically gives rise to a sequence of Fitting (or deter-
minantal) invariants A,(K), A,(K), ..., which are elements of A, defined up to
multiplication by monomials + t5' ...t (see [1] or § 3). The polynomial
A{K) is called the i-th Alexander polynomial of K. The first Alexander
polynomial A((K) is also denoted by A(K) and called “the Alexander
polynomial of K.

THEOREM (Torres [5]). Let K be an n-component link in S3 with
n=2 andlet L be the sublink of K obtained by deleting the n-th com-
ponent. Then

(.t —DADL) if n>2
AK) (tyy ey tyey, 1) =

A(L) if n=2

where I, denotes the linking number of the i-th and n-th components of K.

The following theorem can be considered as a high-dimensional variant
of the Torres theorem.
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THEOREM 1. Let K be an n-component link in S™ with odd m > 5.
Let L be the sublink of K obtained by deleting the n-th component.
Then there exists an element » of A,_, such that

(1) ALY = ANK) (ty, sty 1, 1)+ M.

Here the overbar denotes the involution of the Laurent polynomial

ring A,_,; which sends each polynomial f(t, .., t,_,) into f(t7?, ... t,2)).

It is well known that for any link K < S™ with odd m > 5 the
Alexander polynomial A(K) is non-zero. Moreover,

aug (AK)) = AK)(1,1,..,1) = + 1

(see [1]). This implies that aug(h) = + 1 for any A satisfying (1). It
seems that there are no other restrictions on A; one may even guess
that for any AeA,, heA,_, with aug(A) = aug(l) = + 1 and A = A
there exists a pair K,L as in Theorem 1 such that A(K) = A and
AL) = Alty, ... t,—1, )AL Here and below the symbol = denotes the
equality of Laurent polynomials up to multiplication by a monomial
+ 3 . 35,

Let us call two Laurent polynomials A, A’ € A, algebraically cobordant
if there exist polynomials A, A’ € A, such that AAL = A'’XVA’ and aug ()
= aug (A) = =+ 1. This terminology is suggested by the fact that Alexander
polynomials of (smoothly) cobordant links are algebraically cobordant
(see [4]). The formula (1) enables us to calculate Alexander polynomials of
all sublinks of a given link, up to algebraic cobordism. It is curious to
note that if K, K' are n-component links in S™ with odd m > 5 and if
polynomials A(K), A(K') are algebraically cobordant then Theorem 1 implies
that Alexander polynomials of corresponding sublinks of K, K’ are alge-
braically cobordant to each other. This fact reflects the evident property
of geometric cobordisms: corresponding sublinks of cobordant links are
cobordant.

I do not know if it is possible to associate with a link K some
preferred A = MK) satisfying (1).

The remaining part of the Introduction is concerned with the classical
links. The symbols K, L, n, [, ..., [,_; denote the same objects as in the Torres
theorem formulated above. It may well happen that some of the Alexander
polynomials A;(K), A,(K), .. are equal to zero. Denote by u = u(K) the
minimal integer u > 1 such that A/(K) # 0. Since A,;,(K) divides A(K)
for all i, A(K) = 0 fori < u and A(K) # 0 for i > u(K).
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In view of the Torres theorem it is natural to look for a relationship
between A, (K) and a corresponding invariant of L. In the case u(K) = 1
we have the Torres formula, so we shall restrict ourselves to the case
w(K) = 2 (i.e. the case A(K) = 0).

The integers u(K), u(L) are related by the inequality u(L) > u(K) — 1
(see [1] or §4). If [; # 0 at least for one i = 1,..,n — 1 then the stronger
inequality holds: u(L) > u(K). These inequalities suggest to relate A,(K)
(where we put u = u(K)) with A,_;(L) and A(L). The following relationship
between A (K) and A (L) was established in [4].

TueoreM ([4, Theorem 5.5.1]). If u = w(K) > 2 then there exist an
element N of A,_, and a subset B of the set {1,2,..,n—1} such that
(2) (Y ot = DAL = [] (=1 M- AUK) (tyy s by, 1)

ieB

Several remarks are in order. a) The non-trivial case of the Theorem
is the case where at least one of the integers [,,..,[,_, 1S non-zero:
otherwise t% ...t"-1 — 1 = 0 and we may put A = 0. b) Formula (2) is
proved in [4] under the additional condition u(L) = u(K). However if
(L) < w(K) then we have the trivial case [, =1, = .. =1,_, = 0; if
u(L) > w(K) then A, (L) = 0 and we may put A = 0. ¢) Formula (2)
combines the factors from the Torres formula, formula (1) and a new factor
[[(t;—1). All these factors may be non-trivial (see [4]). d) An explicit
construction of the set B = B(K) is given in [4, § 5]. I do not know if there
exists a preferred A = A(K) which satisfies (2).

The relationships between the polynomials A,(K) and A,_ (L) were first
considered by Levine [2] in the case u = 2.

THEOREM (Levine [2]). If w(K) = 2 then there exist an element A e A, _,
and a set B < {1,2,..,n—1} such that

A(L) = I!(ti—l)-xX-Az(K) (tyyomty_y(, 1).
Note that in the case w(K) > 2 the Levine’s theorem is evident: if
u(K) > 2 then u(L) > u(K) — 1 > 1 so that A(L) = A,(K) = 0.
The following theorem generalizes the Levine’s result.

THEOREM 2. If u = u(K) = 2 then there exist an element M\ of A,_1
and a set B < {1,2,..,n—1} such that

Ausl) = T 1) 20 ALK) 1 oty 1)
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The non-trivial case of Theorem 2 is the case [, = [, = ... = [, _; = 0:
otherwise w(L) > u so that A,_;(L) = 0 and we may put A = 0.

The proof of Theorems 1, 2 goes along the same lines as the proof of
the formula (2) given in [4]. These proofs are based on a relationship
between the Alexander polynomials and Reidemeister-type torsions, estab-
lished in [4]. This relationship is recalled in § 2. In § 3 several easy algebraic
lemmas are proved. Theorems 1, 2 are proved in § 4.

This research was completed while the author was visiting the University
of Geneva. I thank the staff of the Mathematical Department of the
University and especially professors J.-C. Hausmann and M. Kervaire for
their hospitality.

§ 2. TORSIONS OF CHAIN COMPLEXES AND MANIFOLDS

2.1. THE TORSION OF A CHAIN COMPLEX (see [3]). Let Q be a field.
If a=(ay,.,a) and b = (b, .., b, are two bases of a Q-module then

n

a; = ), ¢ ;b; where (c; ;) is a non-singular n x n-matrix over Q; the deter-
j=1

minant det (¢; ;) € Q\O is denoted by [a/b].

Let C = (C,,——C,) be a chain Q-complex. Suppose that each Q-module
C; is finite dimensional with a preferred basis ¢; and each Q-module H,(C) also
has a preferred basis h;. (The case C; = 0 or H(C) = 0 is not excluded; by
definition the zero module has the empty basis.) In this setting one defines the
torsion T©(C)e Q as follows. For each i = 1,2,..,m choose a sequence
b; = (b}, .., bl) of elements of C; such that 9;,_,(b;) = (0;- ((b}), ..., 0;—1(b}))
is a basis in Im (0,_;: C,»C;_,). For each i = 0, 1, .., m choose a lifting
h, of the basis h; to Ker 0;,_ ;. The combined sequence 0i(bi+1)l7ib,- 1s a basis

1

in C,. (It is understood that by = @ and b, ., = Q). Put
(3) «(C) =[] [ai(bi+l)ﬁibi/ci]£(i)
i=0

where (i) = (—1)'*1. Clearly, ©(C) e Q\0. It is easy to verify that t(C) does
not depend on the choice of b; and ﬁ,

(Note that the torsion of C defined in Milnor’s survey article [3]
equals + t©(C)"' € Q/+ 1 and that Milnor uses the additive notation for the

multiplication in Q\0 = K,(Q).)

2.1.1. LemMma (multiplicativity of torsion). Let 0 - C' - C - C" - 0
be a short exact sequence of m-dimensional chain complexes over a field Q.
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Suppose that for all i = 0,1,..,m the modules C;, C:, C! are provided
with preferred bases ¢!, c;,cl which are compatible, in the sense that
[cici/e] = Suppose that for all i = 0,1,..,m the homology modules
H{(C), H(C'), Hl(C”) are provided with preferred bases. lLet H# be the
homology sequence of the sequence 0 - C' — C - C" — 0:

H = (H,(C)—>H,(C)==~Ho(C)>Ho(C") .

Consider # as an acyclic based chain complex over Q. Then
1(C) = + U(C)(C")().

For a proof see [3].

2.2. THE TORSION . Let M be an orientable compact smooth manifold
of odd dimension m with rg H,(M) > 1. Denote the free abelian group
H,(M)/Tors H,(M) by G. Denote the fraction field of the group ring
Z[G] by 0. Provide Q with the involution g+ g which sends ge G to
g~ l. The field Q defines via the natural homomorphism Z[rn,(M)] — Q
a system of local coefficients on M. We shall denote this system by
the same symbol Q. Assume that H_(0M;Q) = 0. In this setting one can
consider a torsion-type invariant w(M) of M which is “an element of Q\0
defined up to multiplication by + gqq with ge G and g€ Q\0” (see [4]).

Recall the definition of w(M) given in [4, § 5]. Let M — M be the regular
covering of M corresponding to the kernel of the natural homomorphism
n,(M) - G. Fix a C!'-triangulation of M and the induced G-equivariant
triangulation of M. Choose over each s1mplex of the (fixed) trlangulatlon
of M a simplex of the triangulation of M. These simplices in M being
arbitrarily oriented and ordered determine “natural” bases of the modules
of the simplicial chain Z[G]-complex C*(]\/~I ; Z.). These bases induce “natural”
Q-bases in the chain Q-complex

C=249 ®Z[G]C*(M  Z).

For all i = 0, 1, .., m choose an arbitrary Q-basis h; in H{(M ;Q) = H,(C).
Denote by 1(C, hq, .., h,) the torsion of C with respect to the bases
in chain modules constructed above and the bases hg, hy, .., h, in
homology. Since H,(0M ; Q) = 0 the semi-linear intersection form H,(M ; Q)

X H,_(M;Q)— Q is non-singular. Let v, be the matrix of this form
regarding the bases h; and h,,_;. Put

d = 1C, hy, hy, .. h,) H (det v;) " € Q\O
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where r = (m—1)/2 and €(i) = (—1)'*%. It is easy to show that under a

different choice of natural bases and bases hg, h,, .., h, the element d

is replaced by + ggqd with g € G, g € Q\0. Thus the set { +gqqd | g € Q\0} = Q

does not depend on the choice of bases. It also does not depend on the
choice of triangulation in M. It is this set which is o(M).

An explicit formula established in [4] enables us to calculate (D(M)

in terms of the orders of Z[G]-modules (aM) *(ﬁM Z), H*(M)

(M ;Z) and related modules. (The notion of the order of a module

is recalled in Sec. 3.1.) Denote by J the image of the inclusion homo-

morphism H (8M) — H (M) where r = (m—1)/2. Then up to multiples of

type qq with g € Q\0
r—1

(4) (M) = ord (TorszgH (M, 0M)) (ord Jy¥® T [ord H(0M)]*
=0

(see [4, Theorem 5.1.1]). Note that the equalities Q @z *(61\71)
= H*(6A7I;Q) = 0 imply that H*(8]\7I) and J are torsion Z[G]-modules.
Therefore ord H i(&]\71) and ord J are non-zero elements of Z[G].

We shall apply formula (4) in the case where M is the exterior of an
n-component link K < §™ with odd m. The condition H (0M;Q) = 0 is
always fulfilled in this case. Here the field Q is canonically identified with
the field of rational functions of »n variables Q, = QO(t, .., t,). Thus
o(M) < Q,. If m = 5 then (4) implies that

AK) (ty, s t, H (ti—1) = o(M).

If m = 3 then there exists a unique subset o = oK) of the set
{1, 2, ..., n} such that
Ayiyf(K) (Ey 5 ooy L) - H (t;—1) = o(M).

For proofs and details consult [4, § 5].

§ 3. ALGEBRAIC LEMMAS

3.1. PRELIMINARY DEFINITIONS. For a finitely generated module H over
a (commutative) domain R we denote by rkzH or, briefly, by rk H the
integer dimy(Q® zxH) where Q = Q(R) denotes the field of fractions of R.
For a R-linear homomorphism f:H — H' we put rk /' = rkg f(H). Note
that if R is the localization of R at some multiplicative system then
O(R) = O(R) and therefore the (exact) functor (H—RQ® g H, fi—idz® f)
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preserves the ranks of modules and homomorphisms. If H, H' are finitely
generated free R-modules and if A is the matrix of a R-homomorphism
H — H' with respect to some bases then rk f = rk A where rk A is the
maximal integer r such that some r x r-minor of A4 is non-zero.

If R is a unique factorization domain with 1 and if 4 is a matrix
with n < oo columns and possibly infinite number of rows then A (A4)
denotes the greatest common divisor of the (n—i+1) x (n—i+ 1)-minors of A.
Here i = 1,2,.. and A A) is an element of R defined up to a unit
multiple. If H is a finitely generated module over R and A4 is a presentation
matrix of H then A(A4) depends only on H and i; one defines A(H) = A[(A).
Clearly A(H) = Ofori < rgH = n — rg Aand A(H) # 0 fori > rg H. The
invariant A,(H) is denoted also by ord H; it is called the order of H.
Itis clear that ord H # 0iff H = Torsg H. For proofs and further information
see [1].

Recall, finally, that a local ring is a domain K which has a unique
maximal (proper) ideal. The quotient of K by this ideal is a field which
we shall call “the field associated to K”.

32. LEMMA. Let R,R' be (commutative) domains with 1 and let
®:R - R be a ring homomorphism. Let C = (+—C, ,—C;—) be a
finitely generated free chain complex over R and let C' be the chain
R'-complex R'®@gC. Then: (i) tkxp H(C') > tkxH/(C) and 1k d; < rk 9,

for all i where 0;,0; are the boundary homomorphisms C;,, — C;, i1
- Ci; ) if rk H(C') = rk H(C) for some i then rk d0; =tk d; for
J=1ii+ 1; ()i R,R are unique factorization Noetherian domains and if

rk H(C') = tk H(C) then ¢(ord(TorsxH(C))) divides ord(Torsg H(C")).

Proof. Letn =1k C;. Let 4 = (a,,), 1 < ¢ < n,1 < p, be the matrix
of d; with respect to some bases in C;, C;,,. Then A’ = (9(a, ,)) is the
matrix of 9; with respect to the induced bases in C i» Ciiq. It is evident
thatrk 0! = rk A’ <rk 4 = rk 0;. Therefore -

tk H(C) = n —tk 0} — 1k d},;, >n —rk o, — rk 0;+1 = tk H(C).
These inequalities imply (i) and (ii).

Put r = n — rk A + 1 and denote the R-module C;/Imd; by J. Since A
is a presentation matrix of J we have ord (TorsgJ) = AJ(A) (see [1, p. 31]).
From the exact sequence 0 - H/(C) —» J — C;_, we obtain that Tors J
= Tors H(C). Thus ord (Tors H(C)) = A,(A4). Analogously ord (Tors H(C"))
= A (A) where ¥ =n—1kAd + 1. If rk H{(C) = rk H(C') then rk 4
;= rk A" and therefore r = . It is evident that ©(A[(A4)) divides A (A)
} forallj. This implies (iii).
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33. LEMMA. Let R be a local ring and F be the associated field.
Let f:Cy — C, be a R-homomorphism of finitely generated free R-modules
and let f:F®@rC, > F Qp Co, be the induced F-homomorphism. If
tk f = rk f then with respect to some basesin C,, C, the homomorphism f

E O
is presented by the matrix lio O} where E is the unit matrix of order 1k f.

Proof. Since F is a field we can choose bases d,, d; respectively in
F®,Cy, F Qg C, so that the matrix of f regarding these bases has the

E O
form [O 0}. Let 9, be a lifting of d;, to C;,i = 1,2. Here &, is a

sequence of rg C; elements of C;. In view of Nakayama’s lemma %,
generate C;. This implies that &, generates the (rg C,)-dimensional vector
space Q(R) @ C; over the field Q(R). Therefore, the elements of the sequence
9; are linearly independent over Q(R) and, hence, over R. Thus &, is a
basis of C; for i = 0,1. The matrix of f with respect to bases %,, 2,

E+U Z
has the form [ i } where U, X, Y, Z are matrices over the maximal

ideal u of R. Note that det(E+U) = 1 (mod u). Since all elements of
R\U are invertible in R the square matrix E 4+ U is invertible over R.
Therefore we can choose bases in C,, C; so that the corresponding matrix

E
of f equals [0

(;ﬂ]. Sincerk f =tk f =tk E, Y = 0.

34, LEMMA. Let R be a local ring and F be the associated field.
Let C = (~—>C,;.,—>C,>) be a finitely generated free chain complex over
R. Let C be the chain F-complex F @rC. Let 0;,0; be the
boundary homomorphisms C;,; — C;,C;.y = C;. If tkpH/(C) = rkzH/(C")
for some i then: H{C),Imd;,,Im0d; are free R-modules and
C,=Imd;,, ® H(C) ® Im 0;; the projection C — C' induces F-isomor-
phisms F @ H(C) - H;(C'), F Qg Im 0; » Im 0 with j = i,i+ 1.

This Lemma directly follows from Lemmas 3.2 (ii) and 3.3.

§4. PROOF OF THEOREMS 1 AND 2

4.1. PRrROOF OF THEOREM 1. Denote by Q, the fraction field of the ring
A, = Z[ty,t7, ., t,,t;*]. Denote by Q) the subring of Q, which consists
of rational functions fg~! with f,geA, and g¢(t,—1)A, (so that
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gty o ta_1, 1) # 0). The homomorphism f > f(ty, ., ly—1, )i A, — A,_4
uniquely extends to a ring homomorphism Q7 — Q,-; which is denoted
by ¢.

Denote by X the exterior of K and by Y the exterior of L.

We shall prove the following two statements.

4.1.1). o(AK)) = AK) (ty, . t,_ 1, 1) divides A(L) in A, _;.

(4.1.2). There exists a representative ® of the torsion &(X) < @, such
that (f,— ) € Q) and ¢((t,— 1)o) represents &(Y) = Q,_ .
Let us show first that these two statements imply the Theorem. Let ®

n—1
be the element of Q, produced by (4.1.2). Put © = [] (t;—1). According
i=1

to the results formulated in Sec. 2.2 the product (t,— 1)n - A(K) represents
®(X). Thus

- —J;—f(r — 1)rA(K)

where f, g€ A,\0. We may assume that ff and gg are relatively prime. If
t, — 1 does not divide g then w € QY and o¢((t,— 1)®) = 0 which contradicts
to the inclusion ¢((t,— ®) € o(Y). Thus g = (t,— 1)h with he A,. In view
of (4.1.1), o(A(K)) # 0, ie. t, — 1 does not divide A(K). If @(h) = O then
(t,—1)* divides g which obviously contradicts the inclusion (t,—1)w e Q°.
Thus ¢@(h) # 0. We have

hh(t,— o = ff nA(K).

Since @(hh(t,—)o) # 0 we have @(f) # 0. This implies that 7 - (A(K))
= 49 ¢((t,— Do) where g = @(h)/@(f). Thus np(A(K)) represents w(Y). Since
TA(L) € o(Y) we have

PAKMAL = A(L)ujt

with non-zero A, pe A,_,. We may assume that Ak and pp are relatively
prime. Since @(A(K)) divides A(L) we immediately obtain pup = 1. Thus,
A(L) = o(A(K)AL.

Let us prove (4.1.1) and (4.1.2). We may assume that X — Y and
that Y\ X is the interior of the regular nelghborhood U < Y of the n-th com-
ponent of K in Y. Let p: X —» X and q:Y > Y be the maximal abelian
coverings with the groups of covering transformations respectively H,(X) ~ Z"
(generators ¢y, .., t,) and H,(Y) ~ Z"~' (generators P . ). It is clear

that p is the composition of an infinite cyclic covering X - q~'(X) and the
covering q: g~ Y(X) - X.
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Fix a C*-triangulation of Y so that X and U are simplicial subcomplexes
of Y. Fix also the induced equivariant triangulations in X and Y.

The ring A,_; determines via the natural homomorphism Z[r,(Y)]
— Z[H,Y] = A,_, a system of local coeflicients on Y which we denote by
the same symbol A,_;. According to definitions, for any simplicial subsets
A o Bof Y the A,_,-module H,(4, B; A, _;) equals H,(C(q~ *(4), ¢~ }(B); Z)).
Here the simplicial chain complex C,(q~(4), ¢~ '(B); Z) is a finitely generated
free A,_,-complex. Analogously A, defines a system of local coefficients
on X and for simplicial subsets A > B of X the A,-module H (4, B;A,)
equals H,(C(p~™'(A), p~ '(B); Z)). Note that

Av_y @, Colp YA, p™1(B); Z) = Cu(q" (A), q" Y(B); Z)

where A, acts on A,_, via o.

Claim 1. Fori# 1, m— 1,

rkAnHi(X;An) = rkAn_lHi(X;An—l) = rk/\n_ H(Y;A,_;) =0.

1

Fori=1m — 1,

rky H(X A, = 1k, H(X;A, ) =n—1;1ky  H(Y;A,_y) =n—2.

Proof of Claim 1. We shall compute the rank of H (X ; A,); modules
H{(X;A,_;)and H(Y ; A,_) can be treated similarly.

Denote by V' a wedge of n circles in X such that the inclusion homo-
morphism H,(V;Z) - H{(X;Z) = Z" 1s bijective. Then H{(X,V,Z) = 0
for i < m — 2. Therefore an application of Lemma 3.2(1) to complexes
C X, p ' (V);Z) and Cu(X,V;Z) gives that rtk, H(X,V;A,) = 0 for
i < m — 2. This implies that tk H(X ; A,) = tk H(V ; A,) fori < m — 3 and
that rk H,,_,(X;A,) <tk H,_,(V;A,). The rank of H(V ; A,) can be com-
puted directly: It is equal to O if i # 1 and to n — 1 if i = 1. Thus the
rank of H(X;A,) equals 0 if i # 1, m — 1 and equals n — 1 if i = 1.
The equality rk H,,_ (X ;A,) = n — 1 follows from duality or from the
equalities

(—1)rk Hi(X;A,) = x(X) = 0.

NgE!

0

i

Claim 2. The exact homology sequence of (Y, X) with coefficients in
A, _ splits into short exact sequences
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O - Hm(Y>X;An—1) - Hmfl(X;An—l) - Hm—l(Y;An—l) - O>
0 » H(X:A,_) > H(Y;A,_) — 0, (i#l,m—1
0 » Hy(Y,X:A,_) 3 H(X;A,_) — Hi(Y;A,_) - 0.

Proof of Claim 2. Clearly, H(Y, X;A,_;) = H(U,U;A,-;) = 0 for
i # 2,m. Therefore the only thing to prove is the injectivity of 0,.
According to Claim 1tk H(X; A,-,) = n — landrtk H{(Y;A,—y) = n — 2.
Since H,(Y, X;A,_;) = A,_,; we see that J, is injective.

Proof of (4.1.1). In view of the equalities rg H(X ; A,) = rg H(X ; A,-)),
i =0,1,.. we may apply Lemma 3.2 (iii) to the chain complexes C*()Z 7))
and C,(q”'(X);Z) respectively over A, and A,_;. Since m — 1 >r > 1
Claims 1, 2 show that H,(X;A,) and H/(X;A,_,) are torsion modules
respectively over A, and A,_; and H(X, A,_,) = H{(Y;A,_,). By definition
AK) = ord H(X ;A,) and AL) = ord H(Y;A,_;) = ord H(X ; A, _ ).
Lemma 3.2 (i11) directly implies that (p(A(K)) divides A(L).

It remains to prove Statement (4.1.2) which is, of course, the core of
Theorem 1. For simplicial subsets 4 > B of Y we shall denote by
C(A, B) the (simplicial) chain Q,,_ ;-complex Q,—; ®4, , C.(g™(4), ¢~ '(B); Z).
Clearly

H{A, B;Q,_,) = Hi(C(A: B)) = Q,_ ®An_1Hi(A> B;A,_y).

Consider the short exact sequence of chain Q,_,-complexes

() 0> C(X) - C(Y) - C(Y, X) > 0.

Provide the homology modules of complexes C(X), C(Y), C(Y, X) with bases
as follows. It is evident that H{C(Y, X)) = O for i # 2, m and

H{C(Y, X)) = H{C(U,8U)) = H(U,3U;Q,_,) = Q,_,

for i = 2, m. Fix a lifting UcY of UxS"2x D2 Fix in H «{C(Y, X))
the generator [U, dU]. Fix in H »(C(Y, X)) the generator [A, dA] where A
is the meridional disk of U.

It follows from Claim 1 that H;(C(X)) = H,(C(Y)) = O fori # 1, m — L.
Fix an arbitrary basis f in the (n—2)-dimensional vector Q, - 1-space
Hy(Y;Q,_,). Fix the dual basis g in H,,_,(Y;Q,_,). It follows from Claim 2
that inclusion homomorphisms H,(C(X)) — H {(C(Y)) are surjective for all i. Let
Fand G be sequences of n — 2 vectors in H,( C(X)) and in H, _ (C(X))
whose images under these inclusion homomorphlsms are equal respectively
1o f and ¢. Claim 2 implies that [6U], G is a basis in H, _(C(X)) and
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[0A], F is a basis in H,(C(X)). Now all homology modules of complexes
C(X), C(Y), C(Y, X) are provided with bases.

Provide the modules of C(X), C(Y), C(Y, X) with natural bases (see Sec. 2.2).
We may choose these bases to be compatible in the sense of Lemma 2.1.1.
According to this Lemma

(C(Y)) = + (CX)N(C(Y, X))

where & is the homology sequence associated with the exact sequence (5).
It is evident that ©#) = + 1. It is easy to verify that t(C(Y, X))
= 1(C(U, 0U)) = + 1. (Indeed, the pair (U, 6U) has a cell structure such
that Int U contains 2 open cells; the meridional disc and its complement;
for such cell structure the equality t(C(U, 0U)) = + 1 is evident. The case of
an arbitrary cell structure (or triangulation) follows from the invariance of
torsion under cell subdivision). Thus ©(C(Y)) = + 1(C(X)). Note that 1(C(Y))
represents w(Y). Therefore ©(C(X)) also represents @(Y).
Consider the chain complex

C = Q) ®4, CuX: 7).

Note that Q2 is a local ring with the maximal ideal (¢,—1)Q°% and
associated field Q, . Clearly, 0, ; ®,0 C = C(X). The natural bases in

chain modules of C(X) lift to natural bases in chain modules of C. Claim 1
implies that for all i > 0

Therefore we may apply Lemma 3.4 to complexes C, C(X). This lemma shows
that: H(C) = H(C(X)) = Ofor i # 1, m — 1; the basis [0A], F in H,(C(X))
lifts to a basis, say, fy, fis . fo_, in H,(C); the basis [6U], G in H,,_ (C(X))
lifts to a basis, say, ¢g¢, g1, - 9gn-o I H,_;(C); the submodules of cycles
and boundaries of C are free in all dimensions. Thus we may apply the
constructions of Sec. 2.1 to C which gives rise to a torsion t(C)e Q2.
It follows directly from the formula (3) that ¢(t(C)) = ©(C(X)). Thus ¢(x(C))
represents o(Y).
Let v be the matrix of the semi-linear intersection pairing

<, > H(X;0)x H, (X;0)~Q,

with respect to bases fy, fi, .. fu—a and go, g1, . gu—r. (Here H{(X ;09
= H,(QC)). It is clear that 1(C) (det v)~ ! represents w(X). Put ® = t(C) (det v)~ 1.
We shall prove that

(6) detv = + (t,—1) + (t,—1)%a

-
-
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where a € Q0. Then (t,— 1)o € Q2 and
o(t,— Do) = e(UO[£1+(t,—1a]™!) = £ o(x(C) € ().

This would complete the proof of (4.1.2).
It is obvious that

| <Jos90>  (t,—1 J
*[an—l)ﬁ E+(t,— 1)y

where a, B, v are respectively a (n— 2)-row, (n—2)-column and (n—2) x (n—2)-
matrix over Q2. It turns out that

(7) <angO> = (tn_—l) + (tn—l)zb

with b € Q°. This immediately implies (6).

I shall prove (7) for a special choice of f, which is sufficient for our
aims. Let 0:[0,1] > 0X be a path whose projection to Y is a loop
parametrizing dA < oU. Let n:[0,1] - X be a path such that n(0) = 6(0)
and n(1) = ¢, - 6(0). Consider the singular chain 3 = 0 — ¢,6 + t,n — 1.
It is easy to check up that 3 is a cycle in X and that its homology class
[9] € H,(C) projects to (1 —t;) [0A] € H,(C(X)). Put f, = (1—t,;)"'[9]. Then
<fo, go> = (1—1t) " '<[9], 90> = (1—t,) " Yt,—1) <m, go> where in the
right part the brackets < , > denote the intersection pairing

The image of <n,g,> under ¢: Q) —> 0, ; can be computed using the
analogous pairing

Hl(Xa a)(;ézn—l) X Hm—l(X;Qn—l) - Qn—l .

N.amely, P(<M,go>) = £ (t;—1). Thus <m,go> = + (t;—1) + (t,— 1)
with ce Q.. Therefore <fy,g90> = + (t,—1) + (t,—1)*b where b
= (1—t,)" 'c. This implies (7).

42. Proof of Theorem 2. We may assume that A, ,(L) # 0 and
ly =1, = = = 1,_; = 0. Then the n-th component of K lifts to the maximal
abelian covering of the exterior Y of L. The remaining part of the proof
is analogous to the proof of Theorem 1. Note, however, the necessary
changes. In Claim 1 fori = 1,2

| kGHAXGA,) =tk H(X;A,_) = u— 1; ka, H{Y ;A ) = u— 2.
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In the proof of (4.1.1) one should take into account that Tors,, _ H (X ;A,_;)
injects into Tors, _ H;(Y;A,_;) and thus the order of the first of these
2 modules divides the order of the second one.
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