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72 V. G. TURAEV

The non-trivial case of Theorem 2 is the case [, = [, = ... = [, _; = 0:
otherwise w(L) > u so that A,_;(L) = 0 and we may put A = 0.

The proof of Theorems 1, 2 goes along the same lines as the proof of
the formula (2) given in [4]. These proofs are based on a relationship
between the Alexander polynomials and Reidemeister-type torsions, estab-
lished in [4]. This relationship is recalled in § 2. In § 3 several easy algebraic
lemmas are proved. Theorems 1, 2 are proved in § 4.

This research was completed while the author was visiting the University
of Geneva. I thank the staff of the Mathematical Department of the
University and especially professors J.-C. Hausmann and M. Kervaire for
their hospitality.

§ 2. TORSIONS OF CHAIN COMPLEXES AND MANIFOLDS

2.1. THE TORSION OF A CHAIN COMPLEX (see [3]). Let Q be a field.
If a=(ay,.,a) and b = (b, .., b, are two bases of a Q-module then

n

a; = ), ¢ ;b; where (c; ;) is a non-singular n x n-matrix over Q; the deter-
j=1

minant det (¢; ;) € Q\O is denoted by [a/b].

Let C = (C,,——C,) be a chain Q-complex. Suppose that each Q-module
C; is finite dimensional with a preferred basis ¢; and each Q-module H,(C) also
has a preferred basis h;. (The case C; = 0 or H(C) = 0 is not excluded; by
definition the zero module has the empty basis.) In this setting one defines the
torsion T©(C)e Q as follows. For each i = 1,2,..,m choose a sequence
b; = (b}, .., bl) of elements of C; such that 9;,_,(b;) = (0;- ((b}), ..., 0;—1(b}))
is a basis in Im (0,_;: C,»C;_,). For each i = 0, 1, .., m choose a lifting
h, of the basis h; to Ker 0;,_ ;. The combined sequence 0i(bi+1)l7ib,- 1s a basis

1

in C,. (It is understood that by = @ and b, ., = Q). Put
(3) «(C) =[] [ai(bi+l)ﬁibi/ci]£(i)
i=0

where (i) = (—1)'*1. Clearly, ©(C) e Q\0. It is easy to verify that t(C) does
not depend on the choice of b; and ﬁ,

(Note that the torsion of C defined in Milnor’s survey article [3]
equals + t©(C)"' € Q/+ 1 and that Milnor uses the additive notation for the

multiplication in Q\0 = K,(Q).)

2.1.1. LemMma (multiplicativity of torsion). Let 0 - C' - C - C" - 0
be a short exact sequence of m-dimensional chain complexes over a field Q.
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Suppose that for all i = 0,1,..,m the modules C;, C:, C! are provided
with preferred bases ¢!, c;,cl which are compatible, in the sense that
[cici/e] = Suppose that for all i = 0,1,..,m the homology modules
H{(C), H(C'), Hl(C”) are provided with preferred bases. lLet H# be the
homology sequence of the sequence 0 - C' — C - C" — 0:

H = (H,(C)—>H,(C)==~Ho(C)>Ho(C") .

Consider # as an acyclic based chain complex over Q. Then
1(C) = + U(C)(C")().

For a proof see [3].

2.2. THE TORSION . Let M be an orientable compact smooth manifold
of odd dimension m with rg H,(M) > 1. Denote the free abelian group
H,(M)/Tors H,(M) by G. Denote the fraction field of the group ring
Z[G] by 0. Provide Q with the involution g+ g which sends ge G to
g~ l. The field Q defines via the natural homomorphism Z[rn,(M)] — Q
a system of local coefficients on M. We shall denote this system by
the same symbol Q. Assume that H_(0M;Q) = 0. In this setting one can
consider a torsion-type invariant w(M) of M which is “an element of Q\0
defined up to multiplication by + gqq with ge G and g€ Q\0” (see [4]).

Recall the definition of w(M) given in [4, § 5]. Let M — M be the regular
covering of M corresponding to the kernel of the natural homomorphism
n,(M) - G. Fix a C!'-triangulation of M and the induced G-equivariant
triangulation of M. Choose over each s1mplex of the (fixed) trlangulatlon
of M a simplex of the triangulation of M. These simplices in M being
arbitrarily oriented and ordered determine “natural” bases of the modules
of the simplicial chain Z[G]-complex C*(]\/~I ; Z.). These bases induce “natural”
Q-bases in the chain Q-complex

C=249 ®Z[G]C*(M  Z).

For all i = 0, 1, .., m choose an arbitrary Q-basis h; in H{(M ;Q) = H,(C).
Denote by 1(C, hq, .., h,) the torsion of C with respect to the bases
in chain modules constructed above and the bases hg, hy, .., h, in
homology. Since H,(0M ; Q) = 0 the semi-linear intersection form H,(M ; Q)

X H,_(M;Q)— Q is non-singular. Let v, be the matrix of this form
regarding the bases h; and h,,_;. Put

d = 1C, hy, hy, .. h,) H (det v;) " € Q\O
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where r = (m—1)/2 and €(i) = (—1)'*%. It is easy to show that under a

different choice of natural bases and bases hg, h,, .., h, the element d

is replaced by + ggqd with g € G, g € Q\0. Thus the set { +gqqd | g € Q\0} = Q

does not depend on the choice of bases. It also does not depend on the
choice of triangulation in M. It is this set which is o(M).

An explicit formula established in [4] enables us to calculate (D(M)

in terms of the orders of Z[G]-modules (aM) *(ﬁM Z), H*(M)

(M ;Z) and related modules. (The notion of the order of a module

is recalled in Sec. 3.1.) Denote by J the image of the inclusion homo-

morphism H (8M) — H (M) where r = (m—1)/2. Then up to multiples of

type qq with g € Q\0
r—1

(4) (M) = ord (TorszgH (M, 0M)) (ord Jy¥® T [ord H(0M)]*
=0

(see [4, Theorem 5.1.1]). Note that the equalities Q @z *(61\71)
= H*(6A7I;Q) = 0 imply that H*(8]\7I) and J are torsion Z[G]-modules.
Therefore ord H i(&]\71) and ord J are non-zero elements of Z[G].

We shall apply formula (4) in the case where M is the exterior of an
n-component link K < §™ with odd m. The condition H (0M;Q) = 0 is
always fulfilled in this case. Here the field Q is canonically identified with
the field of rational functions of »n variables Q, = QO(t, .., t,). Thus
o(M) < Q,. If m = 5 then (4) implies that

AK) (ty, s t, H (ti—1) = o(M).

If m = 3 then there exists a unique subset o = oK) of the set
{1, 2, ..., n} such that
Ayiyf(K) (Ey 5 ooy L) - H (t;—1) = o(M).

For proofs and details consult [4, § 5].

§ 3. ALGEBRAIC LEMMAS

3.1. PRELIMINARY DEFINITIONS. For a finitely generated module H over
a (commutative) domain R we denote by rkzH or, briefly, by rk H the
integer dimy(Q® zxH) where Q = Q(R) denotes the field of fractions of R.
For a R-linear homomorphism f:H — H' we put rk /' = rkg f(H). Note
that if R is the localization of R at some multiplicative system then
O(R) = O(R) and therefore the (exact) functor (H—RQ® g H, fi—idz® f)
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