Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 34 (1988)

Heft: 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: REPRÉSENTATIONS ET TRACES DES ALGÈBRES DE HECKE

POLYNÔME DE JONES-CONWAY

Autor: Vogel, Pierre

Kapitel: §1. Une description du polynôme de Jones-Conway

DOI: https://doi.org/10.5169/seals-56602

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 01.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

§ 1. Une description du polynôme de Jones-Conway

Soit B_n le groupe des tresses à n brins. Ce groupe est engendré par les éléments $\sigma_1, \sigma_2, ..., \sigma_{n-1}$ et σ_i est la tresse élémentaire qui croise le i-ième et le i+1-ième brin de la façon suivante:

De plus, deux de ces tresses σ et σ' commutent si elles ne sont pas d'indices consécutifs, et vérifient la formule suivante dans le cas contraire:

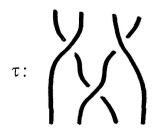
$$\sigma\sigma'\sigma = \sigma'\sigma\sigma'$$

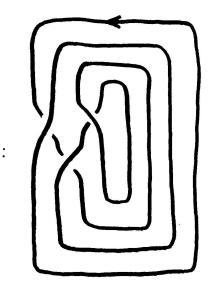
On a ainsi un système complet de générateurs et relations du groupe B_n . Les groupes B_0 et B_1 sont triviaux et le groupe B_2 est commutatif libre de rang 1. Les groupes B_n sont non commutatifs pour n > 2.

Soient p et q deux entiers positifs ou nuls. Soient σ et τ deux tresses à p et q brins. On peut alors juxtaposer ces deux tresses et obtenir une nouvelle tresse à p+q brins que l'on notera $\sigma \times \tau$. Ceci définit ainsi un morphisme de groupes de $B_p \times B_q$ dans B_{p+q} . Il est facile de vérifier que ce produit est associatif et unitaire, d'unité $1_0 \in B_0$, en notant pour tout $i \ge 0$, 1_i l'unité de B_i .

D'autre part, si τ est une tresse de B_n , on peut fermer τ en connectant les extrémités supérieures de la tresse à ses extrémités inférieures, et cela sans rajouter de croisements. On obtient de ce fait un entrelacs orienté $\hat{\tau}$.

Exemple:





Ceci nous donne une application $\hat{}$ de l'union disjointe B des groupes B_n , $n \ge 0$, dans l'ensemble E des classes d'isotopie d'entrelacs orientés. Le

théorème d'Alexander [1], [15] montre que cette application est surjective. Le théorème de Markov [15] dit, plus précisément, que E s'identifie, via l'application $\hat{}$, au quotient de B par la relation d'équivalence \equiv engendrée par:

$$\forall \sigma, \tau \in B_n, \quad \sigma \tau \equiv \tau \sigma$$

$$\forall \sigma \in B_n, \quad \sigma \equiv (\sigma \times 1_1) \sigma_n \equiv (\sigma \times 1_1) \sigma_n^{-1}.$$

Définition 1-1. On appellera bi-algèbre graduée, une suite d'algèbres A_n , $n \ge 0$, sur un anneau commutatif k, munies d'applications μ_{pq} de $A_p \otimes A_q$ dans A_{p+q} , qui vérifient les propriétés suivantes:

- Les applications μ_{pq} sont des morphismes de k-algèbres.
- Elles sont associatives:

$$\forall x \in A_n, \ \forall y \in A_p, \ \forall z \in A_q, \ \mu_{n+pq} \big(\mu_{np}(x \otimes y) \otimes z \big) = \mu_{np+q} \big(x \otimes \mu_{pq}(y \otimes z) \big).$$

— Elles ont un élément neutre:

$$\forall x \in A_n, \ x = \mu_{0n}(1_0 \otimes x) = \mu_{n0}(x \otimes 1_0).$$

Une telle bi-algèbre sera simplement notée A_* , et le produit μ sera noté \times .

Définition 1-2. Soit A_* une bi-algèbre graduée. On appellera représentation des groupes de tresses dans A_* , une suite ρ_n , $n \ge 0$, telle que:

- pour tout $n \ge 0$, ρ_n est une représentation du groupe B_n dans le groupe des unités de A_n ,
 - ces représentations ρ sont compatibles avec les produits \times .

Exemples. On a une représentation universelle en posant:

$$\forall n \geq 0, A_n \equiv k \lceil B_n \rceil$$

et en étendant le produit \times à tout A_n .

On peut également considérer les algèbres: $A_n = k[\mathfrak{S}_n]$, et prendre les représentations canoniques de B_n dans \mathfrak{S}_n .

Soit k l'anneau $\mathbb{Z}[\alpha, \beta, \beta^{-1}]$. Soit H_n la k-algèbre quotient de $k[B_n]$ par l'idéal bilatère engendré par les éléments:

$$\sigma_i^2 - \alpha \sigma_i + \beta, 0 < i < n$$

Proposition 1-3. Les algèbres H_n forment une bi-algèbre graduée et les applications canoniques de B_n dans H_n forment une représentation des groupes de tresses.

P. VOGEL

Démonstration. Il suffit de remarquer que les applications \times de $k[B_p] \otimes k[B_q]$ dans $k[B_{p+q}]$ passent au quotient et définissent des applications de $H_p \otimes H_q$ dans H_{p+q} .

Remarque. Les algèbres H_n sont en fait des algèbres de Hecke formelles. Si dans la définition de H_n , on remplace k par un corps K, avec $\alpha = q - 1$ et $\beta = -q$, où q est un paramètre de K, on obtient exactement l'algèbre de Hecke classique.

Proposition 1-4. Soit A_* une bi-algèbre graduée sur un anneau commutatif k. Alors les k-modules $H_0(A_n)$ forment une k-algèbre unitaire graduée.

Démonstration. Si A est une k-algèbre, le groupe d'homologie de Hochschild $H_0(A)$ est un k-module quotient de A par le sous-k-module engendré par les éléments de la forme ab-ba, a et b parcourant A. On désignera par t l'application quotient de A dans $H_0(A)$. On peut voir t comme la trace universelle sur A. Il n'est pas difficile de vérifier que H_0 est un foncteur de la catégorie des k-algèbres dans la catégorie des k-modules. De plus, si A et B sont deux k-algèbres, $H_0(A \otimes B)$ est canoniquement isomorphe à $H_0(A) \otimes H_0(B)$.

Il en résulte que le produit \times de $A_p \otimes A_q$ dans A_{p+q} induit un produit de $H_0(A_p) \otimes H_0(A_q)$ dans $H_0(A_{p+q})$. Ce produit est clairement associatif et possède $t(1_0)$ comme unité.

Dans toute la suite on désignera par Λ_n le k-module $H_0(H_n)$. La k-algèbre graduée formée des modules Λ_n sera notée Λ . L'application canonique t de H_n dans Λ_n sera notée t_n . Enfin, on désignera par c_n l'élément $t_n(\sigma_1\sigma_2...\sigma_{n-1})$ de Λ_n .

Théorème 1-5. L'algèbre Λ est l'algèbre des polynômes sur k en les variables $c_i, i \geq 1$.

Théorème 1-6. Soit I un sous ${\bf Z}$ -module de Λ . Soit f l'application de la somme disjointe des groupes de tresses B_n dans $\Lambda/_I$ déduite de la représentation des groupes de tresses dans H_* et des applications t_n . Alors pour toute tresse σ , $f(\sigma)$ ne dépend que de l'entrelacs $\hat{\sigma}$, si et seulement si I contient l'idéal J de Λ engendré par les éléments:

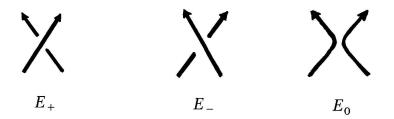
$$c_i - c_1, i \ge 2, \quad c_1(1 + \beta - \alpha c_1).$$

Remarque. Soit I_0 l'idéal de Λ engendré par les éléments c_i-c_1 . Alors Λ/I_0 est isomorphe à l'algèbre $k[c]=\mathbf{Z}[\alpha,\beta,\beta^{-1},c]$, c représentant la

classe commune des éléments c_i . Si maintenant τ est une tresse de B_n , n > 0, la trace $t_n(\tau)$ est un élément homogène de Λ de degré n et sa classe modulo I_0 est de la forme cP où P est un polynôme de k[c]. Il en résulte que la classe de $t_n(\tau)$ modulo J est représentée par cP', où P' est égal à la classe de P modulo $1 + \beta - \alpha c$. Le polynôme P' appartient donc à l'anneau A quotient de k[c] par $1 + \beta - \alpha c$. Cet anneau est isomorphe au sous-anneau de $\mathbf{Z}[\alpha, \alpha^{-1}, \beta, \beta^{-1}]$ engendré par $\alpha, \beta, \beta^{-1}$ et $(1+\beta)\alpha^{-1}$.

Théorème 1-7. Soit A le sous-anneau de $\mathbb{Z}[\alpha, \alpha^{-1}, \beta, \beta^{-1}]$ engendré par $\alpha, \beta, \beta^{-1}$ et $c = (1+\beta)\alpha^{-1}$. Alors il existe pour tout entrelacs orienté E un polynôme P_E de A tel que :

- P_E ne dépend que de la classe d'isotopie de E.
- Si E est le nœud trivial, le polynôme P_E est égal à 1.
- Si E_+ , E_- et E_0 sont trois entrelacs orientés ayant la même forme excepté près d'un croisement où ils ont les configurations suivantes:



on a

(F)
$$P_{E_{+}} - \alpha P_{E_{0}} + \beta P_{E_{-}} = 0.$$

De plus, si E provient d'une tresse $\sigma \in B_n$, et si la trace $t_n(\sigma)$ est un polynôme $P(\alpha, \beta, c_1, c_2, ...)$, on a

$$P(\alpha, \beta, c, c, ...) = cP_E(\alpha, \beta)$$
.

Remarque. Le polynôme P_E est, à un changement de variables près, le polynôme de Jones-Conway (ou polynôme HOMFLY) de E. Le changement de variable dépend de la forme que l'on veut obtenir pour la formule F. Si l'on veut, par exemple, que F0 prenne la forme suivante:

$$xP_{E_+} + yP_{E_-} + zP_{E_0} = 0$$

on doit poser

$$\alpha = -zx^{-1} \quad \beta = yx^{-1}$$

et P_E est un polynôme à coefficients entiers en zx^{-1} , yx^{-1} , xy^{-1} et $(x+y)z^{-1}$.