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ON TORRES-TYPE RELATIONS
FOR THE ALEXANDER POLYNOMIALS OF LINKS

by V. G. TURAEV

§ 1. INTRODUCTION

The classical formula of Torres [5] relates the (first) Alexander polynomial
of a link K in S® with that of the sublink of K obtained by deleting
a component. The aim of the present paper is to establish a Torres-type
formula for Alexander polynomials of higher-dimensional links. We also
discuss analogous formulas for higher Alexander polynomials of links in S°.

An n-component link in the sphere S™ is an ordered collection of
n disjoint smooth imbedded oriented (m—2)-dimensional spheres in S™
With each odd-dimensional link K = S***! one associates a A,module
H,()Z), where A, is the Laurent polynomial ring Z[t,,t; % .. ¢,,t, %], X
is the exterior of K and X is the maximal abelian covering of X. The
module H,()Z) algebraically gives rise to a sequence of Fitting (or deter-
minantal) invariants A,(K), A,(K), ..., which are elements of A, defined up to
multiplication by monomials + t5' ...t (see [1] or § 3). The polynomial
A{K) is called the i-th Alexander polynomial of K. The first Alexander
polynomial A((K) is also denoted by A(K) and called “the Alexander
polynomial of K.

THEOREM (Torres [5]). Let K be an n-component link in S3 with
n=2 andlet L be the sublink of K obtained by deleting the n-th com-
ponent. Then

(.t —DADL) if n>2
AK) (tyy ey tyey, 1) =

A(L) if n=2

where I, denotes the linking number of the i-th and n-th components of K.

The following theorem can be considered as a high-dimensional variant
of the Torres theorem.
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THEOREM 1. Let K be an n-component link in S™ with odd m > 5.
Let L be the sublink of K obtained by deleting the n-th component.
Then there exists an element » of A,_, such that

(1) ALY = ANK) (ty, sty 1, 1)+ M.

Here the overbar denotes the involution of the Laurent polynomial

ring A,_,; which sends each polynomial f(t, .., t,_,) into f(t7?, ... t,2)).

It is well known that for any link K < S™ with odd m > 5 the
Alexander polynomial A(K) is non-zero. Moreover,

aug (AK)) = AK)(1,1,..,1) = + 1

(see [1]). This implies that aug(h) = + 1 for any A satisfying (1). It
seems that there are no other restrictions on A; one may even guess
that for any AeA,, heA,_, with aug(A) = aug(l) = + 1 and A = A
there exists a pair K,L as in Theorem 1 such that A(K) = A and
AL) = Alty, ... t,—1, )AL Here and below the symbol = denotes the
equality of Laurent polynomials up to multiplication by a monomial
+ 3 . 35,

Let us call two Laurent polynomials A, A’ € A, algebraically cobordant
if there exist polynomials A, A’ € A, such that AAL = A'’XVA’ and aug ()
= aug (A) = =+ 1. This terminology is suggested by the fact that Alexander
polynomials of (smoothly) cobordant links are algebraically cobordant
(see [4]). The formula (1) enables us to calculate Alexander polynomials of
all sublinks of a given link, up to algebraic cobordism. It is curious to
note that if K, K' are n-component links in S™ with odd m > 5 and if
polynomials A(K), A(K') are algebraically cobordant then Theorem 1 implies
that Alexander polynomials of corresponding sublinks of K, K’ are alge-
braically cobordant to each other. This fact reflects the evident property
of geometric cobordisms: corresponding sublinks of cobordant links are
cobordant.

I do not know if it is possible to associate with a link K some
preferred A = MK) satisfying (1).

The remaining part of the Introduction is concerned with the classical
links. The symbols K, L, n, [, ..., [,_; denote the same objects as in the Torres
theorem formulated above. It may well happen that some of the Alexander
polynomials A;(K), A,(K), .. are equal to zero. Denote by u = u(K) the
minimal integer u > 1 such that A/(K) # 0. Since A,;,(K) divides A(K)
for all i, A(K) = 0 fori < u and A(K) # 0 for i > u(K).
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In view of the Torres theorem it is natural to look for a relationship
between A, (K) and a corresponding invariant of L. In the case u(K) = 1
we have the Torres formula, so we shall restrict ourselves to the case
w(K) = 2 (i.e. the case A(K) = 0).

The integers u(K), u(L) are related by the inequality u(L) > u(K) — 1
(see [1] or §4). If [; # 0 at least for one i = 1,..,n — 1 then the stronger
inequality holds: u(L) > u(K). These inequalities suggest to relate A,(K)
(where we put u = u(K)) with A,_;(L) and A(L). The following relationship
between A (K) and A (L) was established in [4].

TueoreM ([4, Theorem 5.5.1]). If u = w(K) > 2 then there exist an
element N of A,_, and a subset B of the set {1,2,..,n—1} such that
(2) (Y ot = DAL = [] (=1 M- AUK) (tyy s by, 1)

ieB

Several remarks are in order. a) The non-trivial case of the Theorem
is the case where at least one of the integers [,,..,[,_, 1S non-zero:
otherwise t% ...t"-1 — 1 = 0 and we may put A = 0. b) Formula (2) is
proved in [4] under the additional condition u(L) = u(K). However if
(L) < w(K) then we have the trivial case [, =1, = .. =1,_, = 0; if
u(L) > w(K) then A, (L) = 0 and we may put A = 0. ¢) Formula (2)
combines the factors from the Torres formula, formula (1) and a new factor
[[(t;—1). All these factors may be non-trivial (see [4]). d) An explicit
construction of the set B = B(K) is given in [4, § 5]. I do not know if there
exists a preferred A = A(K) which satisfies (2).

The relationships between the polynomials A,(K) and A,_ (L) were first
considered by Levine [2] in the case u = 2.

THEOREM (Levine [2]). If w(K) = 2 then there exist an element A e A, _,
and a set B < {1,2,..,n—1} such that

A(L) = I!(ti—l)-xX-Az(K) (tyyomty_y(, 1).
Note that in the case w(K) > 2 the Levine’s theorem is evident: if
u(K) > 2 then u(L) > u(K) — 1 > 1 so that A(L) = A,(K) = 0.
The following theorem generalizes the Levine’s result.

THEOREM 2. If u = u(K) = 2 then there exist an element M\ of A,_1
and a set B < {1,2,..,n—1} such that

Ausl) = T 1) 20 ALK) 1 oty 1)
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The non-trivial case of Theorem 2 is the case [, = [, = ... = [, _; = 0:
otherwise w(L) > u so that A,_;(L) = 0 and we may put A = 0.

The proof of Theorems 1, 2 goes along the same lines as the proof of
the formula (2) given in [4]. These proofs are based on a relationship
between the Alexander polynomials and Reidemeister-type torsions, estab-
lished in [4]. This relationship is recalled in § 2. In § 3 several easy algebraic
lemmas are proved. Theorems 1, 2 are proved in § 4.

This research was completed while the author was visiting the University
of Geneva. I thank the staff of the Mathematical Department of the
University and especially professors J.-C. Hausmann and M. Kervaire for
their hospitality.

§ 2. TORSIONS OF CHAIN COMPLEXES AND MANIFOLDS

2.1. THE TORSION OF A CHAIN COMPLEX (see [3]). Let Q be a field.
If a=(ay,.,a) and b = (b, .., b, are two bases of a Q-module then

n

a; = ), ¢ ;b; where (c; ;) is a non-singular n x n-matrix over Q; the deter-
j=1

minant det (¢; ;) € Q\O is denoted by [a/b].

Let C = (C,,——C,) be a chain Q-complex. Suppose that each Q-module
C; is finite dimensional with a preferred basis ¢; and each Q-module H,(C) also
has a preferred basis h;. (The case C; = 0 or H(C) = 0 is not excluded; by
definition the zero module has the empty basis.) In this setting one defines the
torsion T©(C)e Q as follows. For each i = 1,2,..,m choose a sequence
b; = (b}, .., bl) of elements of C; such that 9;,_,(b;) = (0;- ((b}), ..., 0;—1(b}))
is a basis in Im (0,_;: C,»C;_,). For each i = 0, 1, .., m choose a lifting
h, of the basis h; to Ker 0;,_ ;. The combined sequence 0i(bi+1)l7ib,- 1s a basis

1

in C,. (It is understood that by = @ and b, ., = Q). Put
(3) «(C) =[] [ai(bi+l)ﬁibi/ci]£(i)
i=0

where (i) = (—1)'*1. Clearly, ©(C) e Q\0. It is easy to verify that t(C) does
not depend on the choice of b; and ﬁ,

(Note that the torsion of C defined in Milnor’s survey article [3]
equals + t©(C)"' € Q/+ 1 and that Milnor uses the additive notation for the

multiplication in Q\0 = K,(Q).)

2.1.1. LemMma (multiplicativity of torsion). Let 0 - C' - C - C" - 0
be a short exact sequence of m-dimensional chain complexes over a field Q.
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