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ON TORRES-TYPE RELATIONS
FOR THE ALEXANDER POLYNOMIALS OF LINKS

by V. G. Turaev

§ 1. Introduction

The classical formula of Torres [5] relates the (first) Alexander polynomial
of a link K in S3 with that of the sublink of K obtained by deleting
a component. The aim of the present paper is to establish a Torres-type
formula for Alexander polynomials of higher-dimensional links. We also

discuss analogous formulas for higher Alexander polynomials of links in S3.

An rc-component link in the sphere Sm is an ordered collection of
n disjoint smooth imbedded oriented (m — 2)-dimensional spheres in Sm.

With each odd-dimensional link K c S2r + 1
one associates a A„-module

Hr(X), where A„ is the Laurent polynomial ring Z[L, t f1,..., tn9 X
is the exterior of K and X is the maximal abelian covering of X. The
module Hr(X) algebraically gives rise to a sequence of Fitting (or deter-

minantal) invariants AX(K), A2(K),..., which are elements of An defined up to
multiplication by monomials + ts) tsnn (see [1] or § 3). The polynomial
Ai(K) is called the z-th Alexander polynomial of K. The first Alexander
polynomial At(K) is also denoted by A(K) and called "the Alexander
polynomial of K".

Theorem (Torres [5]). Let K be an n-component link in S3 with
n ^ 2 and let L be the sublink of K obtained by deleting the n-th
component. Then

l (tl{..,tf-ï- l)A(L) if n > 2

A(X)(tx 1) I
th_{
-T—r if " 2

\ rl ~ t

where l{ denotes the linking number of the i-th and n-th components of K.
The following theorem can be considered as a high-dimensional variant

of the Torres theorem.
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Theorem 1. Let K be an n-component link in Sm with odd m ^ 5.

Let L be the sublink of K obtained by deleting the n-th component.
Then there exists an element X of An_1 suchthat

(1) A(L) A(K) (t1,tn^l$ 1)-XX

Here the overbar denotes the involution of the Laurent polynomial
ring An_1 which sends each polynomial f(tl9...9tn-1) into f(tï19...,tffx).

It is well known that for any link K c= Sm with odd m ^ 5 the
Alexander polynomial À(K) is non-zero. Moreover,

aug (A(K)) A(K) (1, 1,1) ± 1

(see [1]). This implies that aug {X) +1 for any X satisfying (1). It
seems that there are no other restrictions on X; one may even guess
that for any AgA„, XeAn_1 with aug (A) aug (L) ± 1 and À A

there exists a pair K, L as in Theorem 1 such that A(K) A and

A(L) A(tl9 ...s tn x, \)XX. Here and below the symbol denotes the

equality of Laurent polynomials up to multiplication by a monomial

± tsi - tf.
Let us call two Laurent polynomials A, A' g A„ algebraically cobordant

if there exist polynomials X9 X' g A„ such that AXX A'X'X' and aug (L)

aug (V) ± 1. This terminology is suggested by the fact that Alexander

polynomials of (smoothly) cobordant links are algebraically cobordant
(see [4]). The formula (1) enables us to calculate Alexander polynomials of
all sublinks of a given link, up to algebraic cobordism. It is curious to
note that if K, K' are n-component links in Sm with odd m ^ 5 and if
polynomials A(K), A(K') are algebraically cobordant then Theorem 1 implies
that Alexander polynomials of corresponding sublinks of K, K' are

algebraically cobordant to each other. This fact reflects the evident property
of geometric cobordisms: corresponding sublinks of cobordant links are

cobordant.

I do not know if it is possible to associate with a link K some

preferred X — X(K) satisfying (1).

The remaining part of the Introduction is concerned with the classical

links. The symbols K, L, n, lx,..., 1 denote the same objects as in the Torres
theorem formulated above. It may well happen that some of the Alexander

polynomials AfK), A2(K),... are equal to zero. Denote by u u(K) the

minimal integer u ^ 1 such that AU(K) A 0. Since Ai + 1(K) divides At{K)
for all i, At(K) 0 for i < u and At(K) ^ 0 for i ^ u(K).
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In view of the Torres theorem it is natural to look for a relationship

between Au{K)(K) and a corresponding invariant of L. In the case u(K) 1

we have the Torres formula, so we shall restrict ourselves to the case

u(K) ^ 2 (i.e. the case À(K) 0).

The integers u(K), u(L) are related by the inequality u(L) ^ u(K) — 1

(see [1] or § 4). If lt ^ 0 at least for one i 1,..., n - 1 then the stronger

inequality holds: u(L) > u(K). These inequalities suggest to relate AU(K)

(where we put u u(K)) with A„^(L) and AU(L). The following relationship
between AU(K) and AU(L) was established in [4].

Theorem ([4, Theorem 5.5.1]). If u u(K) ^ 2 then there exist an

element X of An-1 and a subset ß of the set {1, 2,..., n — 1} such that

(2) (tli...fcl- 1)Am(L) - n^-l)-^-AM(K)(ti,...,t„_i,l).
ieß

Several remarks are in order, a) The non-trivial case of the Theorem
is the case where at least one of the integers ll9...,ln_1 is non-zero:
otherwise tl{ tl£i{ — 1 0 and we may put X 0. b) Formula (2) is

proved in [4] under the additional condition u(L) u(K). However if
u(L) < u(K) then we have the trivial case l2 ln_1 0; if
u(L) > u(K) then AU(K)(L) 0 and we may put X 0. c) Formula (2)

combines the factors from the Torres formula, formula (1) and a new factor
f](tj—1). All these factors may be non-trivial (see [4]). d) An explicit
construction of the set ß ß(K) is given in [4, § 5]. I do not know if there
exists a preferred X X(K) which satisfies (2).

The relationships between the polynomials AU(K) and AU_1(L) were first
considered by Levine [2] in the case u 2.

Theorem (Levine [2]). If u(K) ^ 2 then there exist an element X g An_ 1

and a set ß ci {1, 2,..., n— 1} such that

A(L) n (f.-1) • Ü 1).
ieß

Note that in the case u(K) > 2 the Levine's theorem is evident: if
u(K) > 2 then u(L) ^ u(K) - 1 > 1 so that A(L) A2(K) 0.

The following theorem generalizes the Levine's result.

Theorem 2. If u u(K) ^ 2 then there exist an element X of A„_1
and a set ß c {1, 2,..., n— 1} such that

A„_ t(L) n (ti-1) • ü • A ,tn_ t, 1).
ieß
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The non-trivial case of Theorem 2 is the case /x l2 ln_1 0:
otherwise u(L) ^ u so that A^-^L) 0 and we may put X — 0.

The proof of Theorems 1, 2 goes along the same lines as the proof of
the formula (2) given in [4]. These proofs are based on a relationship
between the Alexander polynomials and Reidemeister-type torsions, established

in [4]. This relationship is recalled in § 2. In § 3 several easy algebraic
lemmas are proved. Theorems 1, 2 are proved in § 4.

This research was completed while the author was visiting the University
of Geneva. I thank the staff of the Mathematical Department of the

University and especially professors J.-C. Hausmann and M. Kervaire for
their hospitality.

§ 2. Torsions of chain complexes and manifolds

2.1. The torsion of a chain complex (see [3]). Let g be a field.

If a (a1,..., an) and b (b1,..., bn) are two bases of a ß-module then
n

ai X ci, fij where (citj) is a non-singular n x n-matrix over Q ; the deter-
j= i

minant det e Q\0 is denoted by [u/h].
Let C (Cm—>—>C0) be a chain Q-complex. Suppose that each Q-module

Ct is finite dimensional with a preferred basis c{ and each g-module H^C) also

has a preferred basis ht. (The case Ct 0 or H^C) 0 is not excluded ; by
definition the zero module has the empty basis.) In this setting one defines the

torsion t(C) e Q as follows. For each i 1,2,..., m choose a sequence

bt (b\,..., of elements of Ct such that (di-i(b\),..., dr_x(hy)
is a basis in Im (ôi^1 : For each i 0,1,..., m choose a lifting
/zt- of the basis ht to Ker di^1. The combined sequence d^bi+^hibi is a basis

in Q. (It is understood that b0 0 and bm+1 0). Put

m

(3) T(c) n
1=0

where s(i) (— l)f + 1. Clearly, x(C) g Q\0. It is easy to verify that x(C) does

not depend on the choice of bt and

(Note that the torsion of C defined in Milnor's survey article [3]
equals ± x(C)-1 e Q/± 1 and that Milnor uses the additive notation for the

multiplication in g\0 K^Q))

2.1.1. Lemma (multiplicativity of torsion). Let 0 C -* C -> C" 0

he a short exact sequence of m-dimensional chain complexes over a field Q.
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