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from {u g CGO(X), §udXg 0} to {v e C^iX), $vdXg, 0} (<dXg, denotes the

volume form in the metric g') when X 0.

For completeness, let us indicate how, for instance theorem 0.2, can be

reduced to equation (1) with X 0. It is quite straightforward. First of all

we are given a cohomology class c g H2(X, R) such that there exists a Kähler
form co in c; let p be the Ricci form of oo: p e C^I), the first Chern
class of X.

Then we are given y e Cx(X) and hence / g C{X) a real function
(defined up to an additive constant), which measures the' deviation for co

from satisfying 0.2 :

Y - P ddf

Now we look for another Kähler form co' g c, i.e. we look for a smooth
real function cp (also defined up to an additive constant), where

co' — co y/— 1 dd(p

such that the Ricci form p' of co' coincides with y.

In other words, we want cp to satisfy

p' - p ddf>

or equivalently, if g and g' are the Kähler metrics respectively associated

with co and co',

dd {- Log det (d'g1)}s
which immediately yields equation (1) with X 0:

- Log det (g'g1)/,
since anyway / is only defined up to an additive constant.

As co and co' are cohomologous and closed, so are the corresponding
volume forms, therefore X has same volume measured with the metrics g

and g' ; this defines completely /, subject to the natural constraint mentioned
above.

2. A Topological Lemma

In our setting, the continuity method becomes a "surjectivity method"
since it is based on the following
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Lemma 2.1. Let A, B be metric spaces, with A ^ 0 and B

connected. Let P: A -> B be a continuous map. Assume :

(i) P is open,

(ii) P is proper, that is, for any compact subset K in B, P 1(K) is

compact. Then P is surjective.

Proof. We only need to prove that P(A) is closed. Let b0 be a point

in P(A). Since B is a metric space, there exists a sequence (£>;).>0 in P(^4)

converging to b0. The subset K {b0,bl7b2> —} is compact, hence so is

PP_1(K). The latter contains bl7..., bi7..., hence b0, and it is obviously

contained in P(A). Q.E.D.

In order to make use of this lemma, we shall need some inverse

function theorem for (i), and some a priori estimates for (ii).

3. Local inversion

Theorem 3.1. Let X be a smooth compact manifold, V and W

smooth vector bundles on X, U an open set in Cœ(X, V), and

P:U -+ C°°(X, W\ a smooth nonlinear elliptic partial differential operator.
Let A and B be LCFC submanifolds of U and of C°°(X, W) respectively,
such that the restriction PA of P to A, sends A into B. Then

the Jacobian criterion holds for PA, namely, if the derivative of PA : A —> B

is invertible at (p0 e A, then PA is a local diffeomorphism near cp0.

This is a convenient variant of the Nash-Moser theorem (e.g. [14])
regarding suitable restrictions of elliptic operators. It is established in a

separate paper [11] (see also [22]). It relies only on the classical (Banach)
inverse function theorem combined with elliptic regularity.

Remark 3.2. The Nash-Moser theorem has been studied by many authors,
see the bibliography below and further references in [14] [15] [25].

4. Properness

In view of (2), theorem 3.1 implies that Px is open. We want to apply
lemma 2.1 in order to prove that Px is surjective from Ax to Bx. Since

pi(Ax) # 0 (it contains 0), and since Bx is connected, this amounts to
proving that Px is proper. Let us explain why a priori estimates imply
properness.

Concerning subsets in Ax we have
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