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110 PH. DELANOE AND A. HIRSCHOWITZ

from {ue C*(X), fudX,=0} to {ve C*(X), [vdX,=0} (dX, denotes the
volume form in the metric g’) when A = O.

For completeness, let us indicate how, for instance theorem 0.2, can be
reduced to equation (1) with A = 0. It is quite straightforward. First of all
we are given a cohomology class ¢ € H*(X, R) such that there exists a Kéhler
form ® in ¢; let p be the Ricci form of ®: pe C,(X), the first Chern
class of X.

Then we are given ye C(X) and hence f e C®(X) a real function
(defined up to an additive constant), which measures the deviation for ®
from satisfying 0.2:

Yy—p=.—100f.
Now we look for another Kéahler form ' €c¢, 1.e. we look for a smooth
real function ¢ (also defined up to an additive constant), where

o —o=./—13d0¢

such that the Ricci form p’ of o' coincides with .
In other words, we want ¢ to satisfy

p—p=./—100f,

or equivalently, if g and g are the Kahler metrics respectively associated
with o and o,

00 {— Logdet (g'g™ ")} = dof
which immediately yields equation (1) with A = O:

— Logdet(gg™") = f,

since anyway f is only defined up to an additive constant.

As ® and ®' are cohomologous and closed, so are the corresponding
volume forms, therefore X has same volume measured with the metrics g
and ¢'; this defines completely f, subject to the natural constraint mentioned
above.

2. A ToroLOGICAL LEMMA

In our setting, the continuity method becomes a “surjectivity method”
since it is based on the following
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LemMMa 2.1. Let A, B be metric spaces, with A# @ and B
connected. Let P: A — B be a continuous map. Assume:

(i) P is open,
(i) P is proper, that is, for any compact subset K in B,P YK) is

compact. Then P is surjective.

Proof. We only need to prove that P(4) is closed. Let b be a point

in P(4). Since B is a metric space, there exists a sequence (b;),_, in P(A)
converging to b,. The subset K = {b,y, b, b,, ..} is compact, hence so is
PP~ Y(K). The latter contains by, .., b;, .., hence by, and it is obviously
contained in P(A4). Q.E.D.

In order to make use of this lemma, we shall need some inverse
function theorem for (i), and some a priori estimates for (ii).

3. LOCAL INVERSION

THEOREM 3.1. Let X be a smooth compact manifold, V and W
smooth vector bundles on X, U an open set in C®X,V), and
P:U - C*(X, W), a smooth nonlinear elliptic partial differential operator.
Let A and B be LCFC submanifolds of U andof C®(X, W) respectively,
such that the restriction P, of P to A, sends A into B. Then
the Jacobian criterion holds for P,, namely, if the derivative of P,: A — B
is invertible at @o€ A, then P, is a local diffeomorphism near @,.

This is a convenient variant of the Nash-Moser theorem (e.g. [14])
regarding suitable restrictions of elliptic operators. It is established in a

separate paper [11] (see also [22]). It relies only on the classical (Banach)
inverse function theorem combined with elliptic regularity.

Remark 3.2. The Nash-Moser theorem has been studied by many authors,
see the bibliography below and further references in [14] [15] [25].

4. PROPERNESS

In view of (2), theorem 3.1 implies that P, is open. We want to apply
lemma 2.1 in order to prove that P, is surjective from A, to B,. Since
Pi(4;) # @ (it contains 0), and since B, is connected, this amounts to

proving that P, is proper. Let us explain why a priori estimates imply
properness.

Concerning subsets in 4, we have
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