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on the spin bundle S, is anti-self-dual. Recall (see § 3) that for I" Fuchsian,
extended Fuchsian or a suitable Schottky group X admits such a metric.
The connection on S, is a monopole because the metrics are S'-invariant.
The mass(es) is (are) 1 by proposition 2.2, and the charges k; equal g — 1,
where g is the genus of the fixed surface(s). Choosing a different spin
structure amounts to tensoring the bundle with a 2-torsion element in
Repr (n,(M), S'), compare 2).

In section 7 we shall come to grips with explicit formulae for nontrivial
monopoles on certain handlebodies. In Braam-Hurtubise [11] the moduli
spaces of monopoles on a solid torus are investigated in considerable detail.
A general existence theory for monopoles on hyperbolic manifolds has been
developed in Braam [10].

§ 6. TWISTOR SPACES

To a conformally flat oriented 4-manifold X there are naturally associated
two complex manifolds Z, and Z_, the twistor spaces of X. Applying our
construction of §2 we thus get twistor spaces for hyperbolic 3-manifolds.
It will be shown here that these carry a lot of geometric information
associated to the 3-manifold M, such as the complete geodesic flow. Also they
allow for a description of monopoles through holomorphic geometry. For the
rest of this section let X be the conformal compactification of M x S2,
with M a hyperbolic 3-manifold H3*/T as in §2. We shall state those
properties of Z. that we will need, and refer to Atiyah [1] and Atiyah-
Hitchin-Singer [5] for proofs and more details. The general line of thought
in this section is very similar to that of Hitchin [20] and Atiyah [2].

If §,(S_) is the spin bundle of positive (negative) chirality on X,
then Z ,(Z_) can be realised as the CP!-bundles over X :

P(S.)—> X (P(S.)—X),

where P( ) denotes projectivization of vectorbundles. A remarkable fact is
that Z, and Z_ are complex manifolds with a complex structure encoded in
the conformal structure of X. However, the twistor spaces are only Kéhler
if X =S8%* or X = CP? which in our case results in T — {e} (see
Hitchin [197]). There is an orientation reversing isometry of X arising from
conjugation of the circles. This interchanges the two spin bundles and makes
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Z . holomorphically equivalent to Z _ . Henceforth we shall only consider Z .
and denote it by Z.

Z carries an anti-holomorphic involution :
c:Z—-272, ot=1.

This involution is a bundle map, inducing the identity on the base X,
and is equal to the antipodal map upon restriction to the fibres. The
complex structure on Z is such that (orientation preserving) conformal
transformations on X lift to holomorphic transformations of Z. So our
St-action on X lifts to an action on Z by holomorphic transformations
and complexifies to a holomorphic C*-action on Z. We shall show that
this C*-action is essentially the geodesic flow in H>/T" (as one would expect
from Hitchin [20]).

The naturality with respect to conformal transformations has one further
important application.

Recall (see Atiyah [1]) that the twistor space of S* is CP® with
projection and real structure:

n:CP? - §* = HP':[z4,2,,25,23] = [20+21°j, 23+ 23]
o: CP? - CP?: (20, 21,22, 23] = [—21, 29, — 23, 23]
As X = (S*—A)/T it follows that the twistor space of X is the quotient:
Z = [CPP—n~ Y(A)JT .

To study Z it will be useful to know how C* and PSL(2, C) act on CP>.
The C* action is described by [zq, z{, 25, 23] = [29, A" 21, 25, A+ 23], and

a 0 ¢c O
_ a ¢ 0 a 0 ¢

the right PSL(2, C)-action by mapping [ b d] tol » 0 4 o |EPSL4C)
0 b 0d

which acts naturally on CP3, compare 2.3. Clearly the S'-action fixes
precisely two lines in CP> namely:

6.1 Pi}- = {[Zo, 0, Zy, O] € CP3} and
P; = {[0,z,,0,z;3] € CP?}
These lines are also invariant under the hyperbolic isometries. The

projections to the fixed point set S? — S* are the orientation pre-
serving map P — S%:[z,, z,] = [20, z,] and the orientation reversing map
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P[ — S?:[z;,25] — [z, 23] respectively. Here we have used homogeneous
quaternionic coordinates on S* = HP'. The real structure maps P} toP]
and vice versa.

Non-trivial C*-orbits in CP? are in one-one correspondence with a pair
of begin- and end-points (z, w)e P{ x Py . Upon projecting the orbit ¢
corresponding to (z, w) down to H>:

O = CP? - n(0) = §* = H?> x §* - g(0) = H’

one easily sees that g(0) is an oriented geodesic in H* from ze §* = 8H>
to we S2 The constant geodesics at infinity are included. Further for
pe® < CP? and A e C* we have that the distance of n(p) and m(Ap) on
g(0) equals log|A|. As the C*-action commutes with the I'-action, this
shows that the C*-action is essentially geodesic flow in M. More precisely
consider a copy of M = i(M x{1}) in X. Then Z, is the projectivized
spin bundle of M which is canonically isomorphic to the unit tangent
sphere bundle of M. Further the action of R, , = C* preserves Z),, and is
exactly the geodesic flow.

It is now possible to describe Z in detail. First of all the fixed points
of the C*-action on Z are surfaces S;", S; , which project down to S; = X.
The surfaces S/, S; equal the components of [P —A]/T" and [P; —A]/T
respectively. The real structure maps S to S; .

The nontrivial C*-orbits in Z come in three types. Good orbits emanate
from a plus surface, say S;°, and end on a minus surface, say S, . The
closure of one of these orbits in Z is a CP'. Note that these orbits are
not determined by their two “endpoints”. This corresponds precisely to the
fact that two geodesics in M may have the same two endpoints, but in
between one of them may run through different loops than the other.
Denote by Q; (Q;) the pre-image in P{ (P1) of S} (S;) under the quotient
map. From the above we get the following

PropoSITION 6.1. The good orbits from S; to S; are in one-one
correspondence with oriented geodesics in M = H?/T', which go from S ;
to Sy. These have the complex analytic parameter space [Q; xQ, /T,
which is a holomorphic Q,  bundle over S; or equivalently an Qj
bundle over S, .

Considering all good orbits emanating from S; and ending on some

S« , one gets that these are holomorphically parametrized by a U Q
k
= P — A bundle over S} . Indeed, all orbits emanating from S 7 have a
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nice algebraic parameter space, which is equal to the projectivized holomorphic
normal bundle P(N;) of S; in Z. This is a CP'-bundle over S; . The
bad orbits correspond to geodesics in M which, in the universal cover,
start in Q; and end in A. Of course similar statements hold concerning
arriving geodesics and the projectivized normal bundle of S; . Concerning
the normal bundles we have the following

PROPOSITION 6.2. There are injective, open, locally biholomorphic maps
Vi:NF—>Z, where N is the holomorphic normal bundle of S}
in Z. The C*-multiplication on the bundle N is intertwined with the
C*-action on Z by Vi, whereas ; intertwines multiplication by the
inverse with the C*-action on Z. The projectivized normal bundles
P(N/)(P(N})) are an algebraic parameter space for all geodesics in M
going out from (arriving at) S;.

Proof. This is easy for the normal bundles of P and P; in CP>.
Because the I' action is linear and commutes with the C*-action the result
also holds in Z. ]

Remark 6.3. 1) The relation of the normal bundles with Eichler’s
modules. If #~ — CP! is the positive Hopf bundle, then H(CP!, #™) = II,
is an SL(2, C)-module, called an Eichler module, see Bers [7]. Hence after
choice of a spin structure I' - SL(2, C) a I'-module (compare the discussion
after proposition 2.2). A short computation shows that the normal bundle
of S} in Z is isomorphic to:

NJ?}— = (Qj+ ><1"1:11) ® V+,j>
where V', ; is the positive spin bundle of S ;.

2) In general for complex submanifolds V' < W there are obstructions
for locally embedding the normal bundle in a holomorphic way, see
Kodaira [23].

3) It may be possible to derive the geometry of the ends of the
hyperbolic manifold M from the holomorphic structure of a normal bundle
of a fixed surface. It would be interesting to have a formula for the
metric on an end, giving the end as a foliation by surfaces such that the
foliation is invariant under geodesic flow.

Finally there are very bad orbits, corresponding to geodesics going from
A to A in the universal cover. In M they keep spiralling around, and
never find and endpoint in either direction. For example closed geodesics
are among these, in fact points in non-trivial orbits have a non-trivial
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stabilizer iff the orbit corresponds to a closed geodesic. The C*-orbits in Z
corresponding to closed geodesics are compact holomorphically embedded
elliptic curves in Z. The set of very bad orbits is closed in Z, is disjoint
from the S;, and lies in the closure of the set of very good orbits. In
figure 2 we have sketched the orbit situation.

AN

N+

FIGURE 2.

The next objective of this section is to give a holomorphic description
of monopoles. The relation between twistor spaces and anti-self-dual con-
nections lies in the Atiyah-Ward correspondence (see Atiyah-Hitchin-Singer
[5], for the instanton case):

THEOREM 6.4. Let P - X bean §1-equivariant SU(2)-bundle, and A a
monopole on P. Put E = P X gy, C* Then m*A induces a C*-invariant
holomorphic structure on F = w*E such that:

1) F is trivial on the fibres of .

2) The natural antiholomorphic antilinear bundle map o:F — F*, covering
o on Z, induces an S'-invariant Hermitian metric on the vector spaces
HO(n™ Y(x), F).

3) A*F is holomorphically trivial.

Conversely a C*invariant holomorphic C*-bundle F over Z, with a real

structure o: F — F* satisfying 1, 2 and 3 arises from a unique monopole
on P-—> X. ]

Real structures on indecomposable holomorphic bundles F over twistor
space are unique. Hence all the information is encoded in the holomorphic
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structure. However, existence of real structures is not automatic. The gauge
equivalence relation for monopoles on P — X is the same as holomorphic
6*—equivariant equivalence, preserving real structures, for the holomorphic
bundles F on Z. '

Let A be a monopole on P — X, with all m; # 0 and even, for
simplicity. In this case we need not consider double coverings of groups
and we shall denote the weights of S' by p; = 3-m;. Denote by
F = ¥ X gy)C?) the holomorphic bundle over Z, with real structure o.
By theorem 6.4 the holomorphic structure on F is C*-invariant. An important
aspect of monopole geometry of R® and H? is to consider the quotient
bundle # = F/C* on Z/C* as far as this makes sense. On Z/C*, & will
be an extension of certain standard line bundles, and this has been put to
constructive use in the R® case, see Hitchin [20]. It will be shown that a
more complicated but essentially similar picture persists in our more general
case. As yet, the constructive power seems to be rather limited.

Restricting F to S; it splits holomorphically, since the C* action is fibre-
wise, with nonzero weights + p;:

6.2 F|Sj+ =L @ (L))*

Fis; = Ly @ (L;)*
Here L, has C*-weight p; and ¢,(L;) = — k;, as in §5. For L; we
have C*-weight — p; and cy(L;) = — k;. The real structure gives an

anti-linear isomorphism L; — L; .

PROPOSITION 6.5. On N[ < Z(N; =Z) there are line bundles K (K;),
extending the LI of 6.2 (which were defined on the zero sections S}
of NF), suchthat onthe N the bundle F is an extension:

0-K; - Fyr - (K )* -0
0—-K; —>F,Nj‘ - (K;)*->0
The real structure interchanges these two extensions.

Proof. Recall that sections of P(F) correspond to line sub-bundles of F.
We shall look at the C*-action on P(F) restricted to the fibres (N;),
with zeS; . Over (N;), we have two fixed points in P(F) namely
[(L7),] and [(L;)¥], lying in the fibre above 0 e (N;),. At f = [(L}),]
the weights of the infinitesimal C*-action on T P(F) are (+1, +1, —p;).
This means that most of the C*-orbits will actually flow to [(L;")¥],
compare figure 3.
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stable manifold

() x <

generic orbit

FIGURE 3.

By the stable manifold theorem with holomorphic parameter ze S|,
we get a C*-invariant, codim¢ 1, complex submanifold [L;] of P(F),
consisting of precisely those orbits that flow into L; . For the stable
manifold theorem see Hadamard [16]. On N; the situation is of course
similar. .

In the case of monopoles on H? these extensions extend as bundle maps
from N7 = CP? — P, to CP’ (also for N;) but in our more general
situations there can be obstructions to this.

The extensions of proposition 6.5 descend to the quotient P(N i), and we
proceed by identifying them there. Holomorphic line bundles on the ruled
surfaces are of the form:

p*L ® O(n)

where p: P(Nj) — S; is the projection, L a line bundle on S¥, and
O(n) the n-th power of the positive Hopf bundle on P(N ), which has

fibre (Cv)* at the point [v] € P(N ;). On the fibres of NI the structure
of the bundle follows from:

LemMmA 6.6. Let C* act on C* by scalar multiplication. A C*-
equivariant C*-bundle E — C* is equivariantly isomorphic to E, x C2
with E, the representation of C* on the fibre over 0e C2.

Proof (see Atiyah [2]). On C*\{0} a C*-equivariant bundle is the same
as a bundle on CP', ie. a sum of powers of the Hopf bundle. This
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establishes the given isomorphism on C?\{0}. By Hartog’s theorem it
extends to C2. ]

The point of the lemma is that it identifies K as the pull back of
; under the projection Ni — S¥, with C* acting on it by a character
of weight + p;,. Now one concludes readily that the extension on P(N ;)

reads:

63 O - g;’ — ‘__0/7' — ($J+)* — O Wlth
F =p*L7 ® 0p;) and & = [F|NJ-+\{0}]/C*-

Similarly on P(N ;") we get:

6.4 0% - F > (Z;)* >0 with
Z; =p*L; ® O(p;) and ZF = [F|NJ-_\{0}]/C*-

J

This results in:

THEOREM 6.7. The monopole A defines extensions of % on P(N;)
and P(N;) for j=1,.,N as in 6.3 and 64. These extensions are
interchanged by the real structure. ]

In the case of monopoles on H* these restrictions are essentially all the
data one obtains about the quotient bundles and the monopole is determined
by the extensions and the real structure: see Atiyah [2]. In our case the
intersection of N ;" with N; will generally have many components and we
get extra data in the form of a set of invariant holomorphic identifications:

65 gl.]. Ni+ M Nj— - Hom(FlNi+ 5 Fle_) s

Conjecture. Under general conditions on the hyperbolic structure on M
bundles F arising from irreducible monopoles are determined by the
extensions 6.3, 6.4 and the real structure on these. ' ]

One can almost certainly prove that if F, and F; are two holomorphic
bundles on Z such that upon restriction to w;(N;"UN/;) they become
isomorphic, then they are isomorphic on Z. In order to prove the conjecture
it remains to show that for irreducible monopoles no information is contained
in the g;;. Evidence for this conjecture comes from Thurston’s version of
Mostow’s theorem (see Morgan [29]). This theorem implies that the flat
PSL(2, C)-bundles encoding the holonomy of the hyperbolic structure are
determined by their restriction to the fixed surfaces, despite the fact that the
fundamental group of Z is not necessarily generated by that of the fixed
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surfaces. In fact one may hope to reverse this procedure: a proof of the
conjecture would be a good first step towards a proof of Mostow’s theorem.

It might be a good point to stress that although Z is not Kahler,
suddenly algebraic objects such as elements of Picard groups and ruled
surfaces have appeared. This makes algebraic geometry enter the picture,
perhaps somewhat unexpectedly.

Next we shall consider spectral curves, of which we shall obtain a whole
bunch instead of just a single one, as obtained in the case of R®> and H?
(see Hitchin [20] and Atiyah [2]). Just as in the R® and H?
case we should compare two extensions. On P(N ;NN ) we have:

6.6 0> % >F > (£H*>0 and

j
0% - F > (&L )*—>0
Definition 6.8. The spectral curve
Cik c PIN;ON;) = (Q xQ))/T  jk=1,.,n
1s the zero set of the canonical map
Li = (L)

arising from 6.6. ]

Hence for a manifold with N ends, we get N? spectral curves. However,
the real structure clearly interchanges C # with C,;, so effectively we are
left with (N?+ N)/2 spectral curves, N of which, namely the C;;, have to
satisfy reality constraints. The curves can be interpreted geometrically as
follows::

PROPOSITION 6.9. The following three are equivalent :
I) A C* orbit Oe(Qf xQp)T liesin Cy,.
2) The bundle F restricted to O =P, = Z is isomorphic to  O(p;+ py)

® O(—p;—pr). (For other good orbits it will be isomorphic to  O(p;—py.)
® O(—p;+pi)-)

3) The Hitchin equation (compare Hitchin [20]):

0s

3 + A1 s+ i@-s =0, s:9(0)—> C?

on the corresponding geodesic ¢(0) = H 3T has a bounded solution.
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Proof. To see the equivalence of 1) and 2) we first digress on bundles on
CP'. The result of lemma 6.6 also holds if one replaces C? by C; this
follows by wusing an arbitrary projection C?> — C and pulling back. Thus
E| trivializes in a C*-equivariant way as:

Ly ®([Lj)* on 0 — {0}
L; @(L;j)* on 00— {0}.

The C*-equivariant automorphisms of E_ ., are easily seen to be of the

0 ¢
situation is the same at infinity, and from this it follows that isomorphism
classes of C*-equivariant holomorphic bundles on CP! are given by the set
of two elements B\GL(2, C)/B. The exceptional case is that in which the
transition function maps L to L; , ie. O € Cy. Then F|5 equals O(p;+ py)
® O(—p;—px), otherwise it is isomorphic to O(p;—p,) @ O(p,—p;).

To prove the equivalence of 2) and 3), we first remark that Fig has a
bounded C*-invariant holomorphic nonzero section, iff Fz = O(p;+py)
@ O(—p;— px). This follows from the standard description of sections of line
bundles over CP! as homogeneous polynomials and from the fact that the
weights of the action are is p; at 0 and — p, at oo. The Hitchin equation
is nothing but the Cauchy-Riemann equation for invariant sections, see
Hitchin [20]. Therefore the proposition follows. O

a bz
form , and thus form a Borel subgroup of GL(2, C). The

Remark 6.10. 1) One expects that the spectral curves will generally not
be compact and more or less resemble a curve of infinite genus. This is
because on the universal cover H> we are dealing with a monopole of
infinite charge.

2) It should also be remarked that the complex manifolds (Q; x Q. )/T"
in which the spectral curves lie are far from nice generally. In the case of
cyclic groups they are a C*-bundle over a torus and for quasi-Fuchsian
groups they are disc bundles over a Riemann surface of genus > 2.
Generally they will be Q; bundles over S, and the fibre will have
infinitely many components; see § 2 where we discussed Kleinian groups.

As remarked in the introduction, it should be very interesting to find
constructions for monopole bundles on these twistor spaces. It seems however
that methods previously employed for CP? fail, mainly due to the fact
that the twistor spaces are not Kahler.
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