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358 S. HAYES AND G. POURCIN

An analytic consequence of the construction presented here is that the

~ ~ ~

normalization X of an irreducible Stein space X is (O(X)-convex, O(X)-
I~

separable and has local coordinates by functions in @(X). Some algebraic

~

results are that (O(X) is completely normal and that the two algebras

(5(75 and (9()2) are always locally equal, i.e. their localizations at all
maximal ideals in @(X) are equal.

In this paper, a complex space refers to a reduced complex space with
countable topology.

~ ~
1. EXAMPLE OF A STEIN SPACE X WITH O(X) # O(X)

Let (X, ®) be a complex space with normalization m: X — X. Since w
i1s surjective, the map n*:0(X) — (0()?), f+ fom, is injective and the
holomorphic functions @(X) on X can be considered to be a subring of the
holomorphic functions (9()2) on the normalization X of X; this will be
indicated by 0(X) < (9()2). If X is irreducible and Stein, then (9()2 ) contains

S~
the integral closure O(X) of O(X) but does not always coincide with it,

as will be shown in this section.
For an irreducible complex space (X, ¢), the integral domain O(X)

1s said to be normal, if it is integrally closed in its field of fractions
~

Q(O(X)), ie. O(X) = O(X). Recall that Q(O(X)) is the field of meromorphic
functions M(X) on X when X is irreducible and Stein due to Theorem B
[10, 53.1, 52.17], and that the algebras M(X) and M(X) are isomorphic
for every complex space X [8, p. 161].

The following characterization of normal irreducible Stein spaces X by
their global function algebra O(X) is essentially contained in [2, § 1, p. 35].

THEOREM 1. An irreducible Stein space X is normal if and only if the
integral domain O(X) is normal.

An analysis of the proof shows that even when X is just irreducible and
normal, ¢(X) is also normal. Theorem 1 implies

o~

COROLLARY 1. For an irreducible Stein space X with normalization X,
S~

the integral closure O(X) of O(X) is contained in (9()?).

The following example shows that there are functions f e @()Z) which
are not integral over O(X). In this example, X : = (C, ¢') is an irreducible
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and locally irreducible Stein space given by a substructure of the canonical
complex plane (C, @), which is then the normalization X of X. The sub-
structure is defined by a “Strukturausdiinnung” (see [10]) which results by
replacing the stalks (/,, n e N, with the stalks of generalized Neil parabolas
becoming steeper as n increases. More precisely, let (p,)..n b€ a strictly
increasing sequence of prime numbers. For every n e N,

X, = {(x,y) e C? s xP = yrt1]

is an irreducible, locally irreducible analytic subset of C? with the origin as
the only singularity and with normalization

1,:C = X, , t (T ),

n>

Let f e O(C) be the identity and denote by ¢y the canonical complex
structure on X,. The germ f,e @, of f at the origin is integral over
Oy, , with respect to a polynomial of degree p,, and p, is the minimal
degree of all such polynomials.

Now define X : = (C, ¢') as a substructure of the canonical plane (C, ¢)
with stalks

| O. , x¢N
o, =
* Ox,,» X =neN
such that the following diagram commutes
g, - 0,
= | | =

o

] §
OXn,O - (/0’

where €, — ¢, is the map induced by the identity (C, ¢) — (C, @) and
G, = O, 1s determined by the translation C - C,z+ z — n.
The identity f e ¢(C) is not integral over ¢'(C), because otherwise every
polynomial of integral dependence would have degree at least p, forall ne N.
In conclusion it should be mentioned that @(f) is almost integral over

O(X) [7,§3] for every irreducible Stein space X, since X has a global
universal denominator [10, E.73a].
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