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358 S. HAYES AND G. POURCIN

An analytic consequence of the construction presented here is that the

normalization X of an irreducible Stein space X is (9(X)-convex, (9(X)-

separable and has local coordinates by functions in (9{X). Some algebraic
results are that (9{X) is completely normal and that the two algebras

(9(X) and (9{X) are always locally equal, i.e. their localizations at all
maximal ideals in (9{X) are equal.

In this paper, a complex space refers to a reduced complex space with
countable topology.

1. Example of a Stein space X with (9{X) ^ (9(X)

Let (X, 0) be a complex space with normalization k : X -> X. Since tc

is surjective, the map k* : (9(X) &{X\ f h-> / o tt, is injective and the

holomorphic functions 0(X) on X can be considered to be a subring of the

holomorphic functions (9{X) on the normalization I of I; this will be

indicated by 0{X) c (9{X). If X is irreducible and Stein, then (9(X) contains

the integral closure (9{X) of (9{X) but does not always coincide with it,
as will be shown in this section.

For an irreducible complex space (X, (9\ the integral domain (9{X)
is said to be normal, if it is integrally closed in its field of fractions

Q(@(X)), i.e. (9{X) (P(X). Recall that Q((9(X)) is the field of meromorphic
functions M(X) on X when X is irreducible and Stein due to Theorem B

[10, 53.1, 52.17], and that the algebras M(X) and M(X) are isomorphic
for every complex space X [8, p. 161].

The following characterization of normal irreducible Stein spaces X by
their global function algebra (9{X) is essentially contained in [2, § 1, p. 35].

Theorem 1. An irreducible Stein space X is normal if and only if the

integral domain &(X) is normal

An analysis of the proof shows that even when X is just irreducible and

normal, (9(X) is also normal. Theorem 1 implies

Corollary 1. For an irreducible Stein space X with normalization X,

the integral closure 0(X) of (9(X) is contained in (9(X).

The following example shows that there are functions / g 0(X) which

are not integral over (9{X). In this example, X : (C, (9') is an irreducible
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and locally irreducible Stein space given by a substructure of the canonical

complex plane (C, $), which is then the normalization X of X. The
substructure is defined by a "Strukturausdünnung" (see [10]) which results by

replacing the stalks (9n, n e N, with the stalks of generalized Neil parabolas
becoming steeper as n increases. More precisely, let (pn)neN be a strictly
increasing sequence of prime numbers. For every n g N,

Xn: {(x9y)e C2 : x*- /»+1}

is an irreducible, locally irreducible analytic subset of C2 with the origin as

the only singularity and with normalization

un:C^Xn, +

Let / g (9(C) be the identity and denote by (9Xn the canonical complex
structure on Xn. The germ f0 g (90 of / at the origin is integral over
(9Xn 0

with respect to a polynomial of degree pn, and pn is the minimal
degree of all such polynomials.

Now define X : (C, (9') as a substructure of the canonical plane (C, (9)

with stalks

m -L* ' X*N
N

such that the following diagram commutes

&'n ^
4 4

^„,0 -
where &'n->(9n is the map induced by the identity (C, 0) -> (C, and
On C'

o is determined by the translation C -* h-> z —

The identity f e (5(C) is not integral over (5'(C), because otherwise every
polynomial of integral dependence would have degree at least pn for all e N.

In conclusion it should be mentioned that &(X) is almost integral over
&'(X) [7, § 3] for every irreducible Stein space since X has a global
universal denominator [10, E.73a].


	1. Example of a Stein space X with $\widetilde{O(X)} \neq O(\tilde{X})$

