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(*) q(X) c n
xeX

For / £ ö?(i), aeX and b e p~1(p(a}), it is now possible to conclude

that f(a) f(b) is true. Let x: 7u(a). Due to (*), functions g e Sx and

he A exist with / h/g ° tl Since a and b are equivalent with respect to
the equivalence relation R, /(a) f(b) follows, and a continuous function
F : 7 -» C exists with F ° p /.

Since the Stein complex structure on 7 is not in general the canonical

ringed quotient structure, it is still necessary to verify that F is holo-

morphic in order to prove the density of A in ê{X). To that end, let
H e (9{Y) and G e ®(Y) have the property that H c p h and G o p gen.
Such functions exist because p*((9(Y)) — Ä holds. Then F — H/G follows,
and the germ Fp{a) is the germ of a holomorphic function at p(a), since

the germ Gp{a) of G at p(a) is a unit. The surjectivity of p implies that F
is holomorphic on 7, completing the proof of the theorem.

Note that the topology induced by &{X) on any subalgebra A of
&{X) is the metrizable topology of uniform convergence on compact subsets

of X. Because the closure Ä of A in 6(X) is its completion, Ä can be

obtained without referring directly to F{X). Thus the Main Theorem can be

stated as follows :

If X denotes the normalization of an irreducible Stein space X, then

G(X) is the completion of the integral closure C(X) of F(X).

3. Applications

In this section X will denote an irreducible Stein space with normalization

k : X -> X, &{X) will be the integral closure of the holomorphic functions
(9(X) on X, 3(X) the Fréchet algebra of weakly holomorphic functions on X
(or equivalently, the Fréchet algebra of holomorphic functions G(X) on X), and

Sx: {ge 0(X) : g(x) ^0} for x e X

Although the example given in the first section shows that the algebras

&(X) and &(X) are not always equal, the inclusion (*) in the proof of the
Main Theorem implies that they are locally equal in the following sense.

Theorem 2. For every x e X, the localizations of F(X) and G(X)
with respect to Sx coincide.
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The next theorem implies an algebraic description of the topological

closure of 0{X) in (9(X).

Theorem 3. 0(X) fi] Sf1 (9(X).
xeX

Proof. Let / g M(X) M(X) be such that for every x e X there is

à g g Sx and sua he 0(X), with / h/g ° n. Then the germ fa of / at an

arbitrary point a e X is holomorphic, because the germ of g ° n at a is a

unit. Hence / g (9{X\ and the assertion is proved.

Corollary 2. The topological closure of 0(X) in &(X) is the

intersection of the localizations of (9(X) with respect to Sx for all xe X.

The next result characterizes the weakly holomorphic functions on X
as being exactly those meromorphic functions on X which are almost integral
over (9{X).

Corollary 3. @(X) is completely normal.

Proof. Let / g M(X) be almost integral over (9{X). Then / is almost

integral over 0{X) and therefore over Sx
1 (9(X) for every xeX which has

been shown to be completely normal in the proof of the Main Theorem.
An application of Theorem 3 yields / g 0(X) and hence the assertion.

Using the classical Oka-Weil-Cartan Theorem [1, Anhang zu VI, § 4],
an immediate consequence of the Main Theorem is

Theorem 4. X is (D(X)-convex, (9(X)-separable and has local coordinates

by functions in &{X).

A property which ensures that the holomorphic functions on X are

integral over the holomorphic functions on X is that (9{X) is a finite

$(X)-module.

Theorem 5. Let u e &(X) be any global universal denominator for X.
Then (9{X) is isomorphic to the closed ideal u(9(X) in (9{X\ and

(9(X) is a finite (P(X)-module if and only if this ideal is finitely generated.

Proof Recall that a global universal denominator u for X always exists

[10, E.73a]. The multiplication map

<9{X) -> 0{X), f^uf,
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defines an injective C(X)-module homomorphism. Thus, (9(X) is isomorphic to

the ideal u&(X)in(P(X) which will now be denoted by I. Consider the

transporter ideal J ' (9 — (9of — (9 into (9 which is a coherent sheaf of
u u

ideals in <9. The global sections J{X)forma closed ideal of by a

theorem of Cartan [4, 5], due again to the fact that X is Stein. Because

j(X) I holds, the assertion follows.

Corollary 4. If (9{X) doesnot coincide with (9{X\ the closed ideal

u<9{X) in &{X) is not finitely generated.

In a Stein algebra (9{X),every finitely generated ideal is closed, as

Cartan [4, 5] showed. If X is at least two-dimensional, Forster [6] gave

examples of closed ideals in &(X) which are not finitely generated. According

to Corollary 4, the space constructed in § 1 gives a one-dimensional example.
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