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(¥) OX)c () S;'4.
xeX

For fe®X), aecX and bep Y(p(a), it is now possible to conclude
that f(a) = f(b) is true. Let x: = m(a). Due to (), functions ge S, and
he A exist with f = h/g o m. Since a and b are equivalent with respect to
the equivalence relation R, f(a) = f(b) follows, and a continuous function
F:Y — Cexists with Fop = f.

Since the Stein complex structure on Y is not in general the canonical
ringed quotient structure, it is still necessary to verify that F is holo-
morphic in order to prove the density of A4 in @(i). To that end, let
He 0(Y) and G € O(Y) have the property that Hep = hand Gep = gom.
Such functions exist because p*(((Y)) = A holds. Then F = H/G follows,
and the germ F,, is the germ of a holomorphic function at p(a), since
the germ G,, of G at p(a) is a unit. The surjectivity of p implies that F
is holomorphic on Y, completing the proof of the theorem.

~

Note that the topology induced by ((X) on any subalgebra A of
(9(X~) 1s the metrizable topology of uniform convergence on compact subsets
of X. Because the closure A of A in 6(X~) is its completion, 4 can be
obtained without referring directly to &‘()f). Thus the Main Theorem can be

stated as follows:
If X denotes the normalization of an irreducible Stein space X, then

~ I~
((X) is the completion of the integral closure (X)) of ¢(X).

3. APPLICATIONS

In this section X will denote an irreducible Stein space with normalization

~ r~
n: X - X, 6£X) will be the integral closure of the holomorphic functions

¢(X) on X, ¢(X) the Fréchet algebra of weakly holomorphic functions on X
(or equivalently, the Fréchet algebra of holomorphic functions C“()Z )on X ), and

S.i={gel(X):g(x) # 0} for xeX.

Although the example given in the first section shows that the algebras
~ ~

O(X) and O(X) are not always equal, the inclusion (%) in the proof of the

Main Theorem implies that they are locally equal in the following sense.

S~ ~

THEOREM 2. For every xe X, the localizations of G(X) and O(X)
with respect to S, coincide.
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The next theorem implies an algebraic description of the topological
~ -

closure of O(X) in O(X).

~ S~
THEOREM 3. O(X) = () S;' O(X).

xeX

Proof. Let f eM()?) = M(X) be such that for every x e X there is

~
ageS, and an he O(X), with f = h/g o n. Then the germ f, of f at an
arbitrary point a € X is holomorphic, because the germ of gom at a is a
unit. Hence f € ¢(X), and the assertion is proved.

~

r~
CoroLLARY 2. The topological closure of (O(X) in O(X) is the inter-

~
section of the localizations of @(X) with respect to S, for all x e X.

The next result characterizes the weakly holomorphic functions on X
as being exactly those meromorphic functions on X which are almost integral
over 0(X).

COROLLARY 3. (O(X~ ) is completely normal.

Proof. Let f eM(X~) be almost integral over @()Z). Then f is almost

~
integral over ()(X) and therefore over S, ! @(X) for every x € X which has

been shown to be completely normal in the proof of the Main Theorem.
An application of Theorem 3 yields f € (9()2) and hence the assertion.

Using the classical Oka-Weil-Cartan Theorem [1, Anhang zu VI, § 4],
an immediate consequence of the Main Theorem is

. Ve I~
THEOREM 4. X is O(X)-convex, O(X)-separable and has local coordinates
~
by functions in (O(X).
A property which ensures that the holomorphic functions on X are
integral over the holomorphic functions on X is that O(X) is a finite

O(X)-module.

THEOREM 5. Let ue O(X) be any global universal denominator for X.
Then O(X) is isomorphic to the closed ideal u0O(X) in O(X), and
(9()2) is a finite O(X)-module if and only if this ideal is finitely generated.

Proof. Recall that a global universal denominator u for X always exists
[10, E.73a]. The multiplication map

OX) - 0X), fruf,
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defines an injective ¢(X)-module homomorphism. Thus, (9()2 ) is isomorphic to
the ideal u(O()Z) in O(X) which will now be denoted by I. Consider the

~ 1 1 . ~ L.
transporter ideal J:= @:— 0 of — 0O into O which is a coherent sheaf of
u u

ideals in @. The global sections J(X) form a closed ideal of @(X) by a
theorem of Cartan [4, 5], due again to the fact that X is Stein. Because
J(X) = I holds, the assertion follows.

~

COROLLARY 4. If O(X) does not coincide with (’0.(7(/), the closed ideal
u(O()Z) in O(X) is not finitely generated.

In a Stein algebra O(X), every finitely generated ideal is closed, as
Cartan [4, 5] showed. If X is at least two-dimensional, Forster [6] gave
examples of closed ideals in ¢(X) which are not finitely generated. According
to Corollary 4, the space constructed in § 1 gives a one-dimensional example.
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