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342 P. VOGEL

PROPOSITION 2-4. L’algébre H, est un k-module libre de base S,.

Démonstration. Soit p < n un entier strictement positif. Notons, pour
tout i compris entre 1 et p (au sens large), 1; I'élément c,_,6,_, .. C;.
I1 est facile de vérifier les formules suivantes:

o;T; st j<i—1
Vi<pVj<p10;= T; si j=i—1
Ci—1T; st j>i.

Il en résulte que le sous-module de H, engendré par S, est stable par
multiplication a droite par tous les générateurs o; de H,, ce qui prouve
que H, est engendré linéairement par S,,.

Soit maintenant ¢ lapplication de Z dans N, de support {1,2,.., n}
et qui vaut 1 sur son support. Le K-module M(p) est alors isomorphe a
'anneau du groupe symétrique K[S,]. Soit f, 'inclusion de {1, .., n} dans Z.
La multiplication a droite par f, induit une application K-linéaire y de
H, ® K dans M(p). Si 'on tensorise ces modules par Z au-dessus de K,
via le morphisme de K dans Z qui envoie A et pen l et — 1, H, ® Z
devient Z[S,] ainsi que M(p) et y devient l'identité. On en déduit que
v(S,) est une base de M(p) ® Z et un systeme libre de M(yp). Ce qui
prouve que S, est une base de H,,.

COROLLAIRE 2-5. Pour tout entier n > 0,H, est un H,_,-module a
gauche libre de base X, = {1,0,_1, ., Gy_1C,—5 .. C1}.

COROLLAIRE 2-6.  Pour tout n > 0, H,,, estun H,bimodule isomorphe a

H,®H, ® H,.
Hp,-

Démonstration. L’isomorphisme provient de la stabilisation i de H,
dans H,,, et de l'application de H, x H, dans H,,; qui a (u, v) associe
i(wo,i(v). L’application qui s’en déduit respecte les bases (pour la structure
le H,-module a gauche). C’est donc un isomorphisme.

§ 3. TRACES DES ALGEBRES DE HECKE

Soit » > 0 un entier. Via la stabilisation i de H, dans H,,,, H,,
est un H,-bimodule. On peut donc considérer le module E, = Hy(H,, H, . ),
quotient de H,,, par le sous-module engendré par les éléments de la forme:

|
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ax —xa, aci(H,), xe€H,.;.

Comme précédemment, le produit x induit un produit associatif de
A, ® E, dans E,,, et E est un A-module gradue.

PROPOSITION 3-1. L’application qui, @ tout élément xe€ H,, associe
Pélément (xx1,)o, de H,.,,1 étant lunité de H,, induit pour tout
n> 0 une application de E,_, dans E,. Cette application sera notée 0.

Démonstration. 1l suffit de remarquer que o, € H,,; commute avec tout
élément stabilisé d’un éléement de H,,_, .

Notations 3-2. On désignera par s, la classe de 1€ H; et, pour tout
n > 0, on posera

Sn = e(sn—l)‘

L’application quotient de E, dans A,,; sera notée f; f est une forme
A-linéaire surjective, et lon a: Vn = 0, f(s,) = Cp+1-

PROPOSITION 3-3. E est un A-module libre de base {sq, Sy, S5 ...}
Démonstration. D’apres le corollaire 2-6, on a

En = An @ HO(HnaHn ® Hn)
Hn

-1

Il n’est pas difficile de montrer que Papplication de H, ® H, dans H, qui

a u® v associe vu induit un isomorphisme de Hy(H,, H, & H,) sur
Hn—l
HyH,_ ,,H,) = E,_;. Ce qui montre que Papplication de A, @ E,_, dans
E,, qui a u @ v associe us, + 9(v), est un isomorphisme.
On en déduit, par récurrence sur n, la formule

En = AnSO @ An_lsl @ @ AOSn 5

ce qui montre le résultat cherché.

LEMME 3-4. L’algébre A est engendrée par les éléments c;,i > 1.

Démonstration. La formule

En == AnSO @ An_lsl @ _— @ Aosn

montre que A, ; ; est engendre par les sous-modules A, _;c;,,, pour i variant
de 0 a n. Comme ceci a lieu pour tout n > 0, on en déduit le résultat.
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344 P. VOGEL

LeEMME 3-5. L’algébre A est commutative.

Démonstration. Soient ¢ et T deux tresses. Comme les tresses o X T
et T X o sont clairement conjuguées, les traces de ¢ et de t commutent
dans A. Comme de plus les classes ¢; proviennent de tresses, A est commutatif.

Soit ¢ une fonction de Z dans N a support finii Le module
M(p) (voir §2) est un module libre de dimension fini sur I’anneau
K = Z[AM A7 p,u™ '] et lalgébre H, (n étant égal au poids de o) agit
sur M(¢p). Pour tout ¢lément u de H, on notera t,u) la trace de l'endo-
morphisme de M(p) induit par la multiplication par u. Comme ¢, est
linéaire et prend la méme valeur en uv qu'en wvu, t, induit une application
lin¢aire T, de A, dans K que I'on prolongera par O sur tous les modules
A,, p # n. Ainsi, Papplication T, est une application k-linéaire de A dans K.

LEMME 3-6. On a la formule :
Ty(c,) = A+ p)t !

k désignant le cardinal du support de .

Démonstration. Soit S le support de ¢. Cest une partie de Z a k
éléments. Par définition M(¢p) a une base B(¢p) formée des fonctions f de
X, ={1,2,..,n} dans S telles que pour tout i de S, f prend la valeur i
exactement @(i) fois. Si 'on munit M(¢p) d’'un produit scalaire < , > tel
que B(o) soit une base orthonormee, on a

Tq,(cn) = Z <f, 8185 e 8= 1(f)> .

JeB(p)

Soit f un ¢lément de la base B(p). L’¢lément s,_(f) est de la forme
af + bf og,_,, b étant supposé nul si f prend les mémes valeurs en n
et en n — 1. Comme la valeur de f og,_; en n n’est pas modifiée apres
action des éléments s;,i < n — 1, on a

<f,5185 .. 8, 1(f)> = a<f, 8185 . S,_o(f)> .

Si f(n—1) est strictement inférieur a f(n), a est nul. Sinon a est égal a A
ou A + p suivant que f(n—1) est égal ou non a f(n). En itérant ce
raisonnement de proche en proche, on vérifie la formule

0 si di<n telque f(i)< f(i+1)

<f, 182 ... Sn—l(f)> = { }\’P(}L_}_H)q sinon R

p (resp. q) étant égal au nombre d’entiers non nuls i < n tels que f(i)
et égal (resp. strictement supérieur) a f(i+ 1).
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Si la suite f(l),.., f(n) est décroissante, g est égal au cardinal de
image de f diminué d’une unité, et p est égal & n — 1 — g. Comme de
plus la base B(p) ne contient qu’une seule fonction décroissante, on vérifie
aisément le lemme.

PROPOSITION 3-7. Soit ¢ wune fonction de Z dans N de poids
n=p+gq. Soient u et v deux éléments de A, et A,. Alors on a

T(p(uv) = zTcp’(u)Y:p—(p'(v) s

la sommation ayant lieu sur toutes les fonctions ¢  de poids p, comprises
au sens large entre 0 et .

Démonstration. Désignons par H, x H, I'image par I'application x de
H,® H, dans H,. Le module M(¢p) est isomorphe, en tant que H, x H,-
module a la somme directe des modules M(¢') ® M(p—@’), @ appartenant
a I'ensemble des fonctions de poids p et comprises entre 0 et ¢. Soient x
et y des représentants de u et v dans H, et H,. Comme la trace de
u @ v agissant sur M(¢') ® M(p— ') est égal au produit de la trace de u
agissant sur M(o’) par la trace de v agissant sur M(p— '), on obtient
le résultat cherché.

COROLLAIRE 3-8. Soit @ une fonction a support fini de Z dans N.
Soit & une bijectionde Z dans Z. Alors les formes linéaires T, et T
sont égales.

Qo

Démonstration. D’apres le lemme 3-6 T, et T,,., prennent la méme valeur
sur les €léments ¢, de A. D’aprés la proposition 3-7, si, pour tout e,
T, et T,, prennent les mémes valeurs en u et en v, elles prennent, pour
tout @, la méme valeur en uv. On en déduit que T, et T
quel que soit .

Il en résulte que T, ne dépend que de la partition du poids n de @
en les nombres @(p). Cette partition est caractérisée par la suite finie

Pi, P2, - p; désignant le nombre de fois ou ¢ prend la valeur i. On notera
alors T, sous la forme T, ou u est le mot ¢?' c5> ... .

0oe SONt égales

§4. LA TRACE T

Soit x = (x;) une famille de symboles. On désignera par A(x) lalgebre
. des séries en les x; a coefficients dans K = Z[A, A~ ', p, p~!]. Un élément de
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