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CJjXj si j < - 1

X si j - 1

aT; - ßti-1 si j
Vj-lli si j >

Proposition 2-4. L'algèbre Hn est un k-module libre de base Sn.

Démonstration. Soit p < n un entier strictement positif. Notons, pour
tout i compris entre 1 et p (au sens large), xt l'élément ap_1ap_2
Il est facile de vérifier les formules suivantes :

Vi < p, V; <

Il en résulte que le sous-module de Hn engendré par Sn est stable par
multiplication à droite par tous les générateurs ot de Hn, ce qui prouve
que Hn est engendré linéairement par Sn.

Soit maintenant cp l'application de Z dans N, de support {1, 2,..., n}
et qui vaut 1 sur son support. Le K-module M(cp) est alors isomorphe à

l'anneau du groupe symétrique K[0„]. Soit f0 l'inclusion de {1,..., n) dans Z.

La multiplication à droite par f0 induit une application K-linéaire y de

Hn (g) K dans M(cp). Si l'on tensorise ces modules par Z au-dessus de K,
via le morphisme de K dans Z qui envoie À et p en 1 et — 1, Hn ® Z
devient Z[0„] ainsi que M(cp) et y devient l'identité. On en déduit que
y(S„) est une base de M(cp) 0 Z et un système libre de M(cp). Ce qui

prouve que Sn est une base de Hn.

Corollaire 2-5. Powr tout entier n > 0, Hn est un Hn-^module à

gauche libre de base {1, a„_l5..., a„_1a„_2 G!}.

Corollaire 2-6. Pour tout n>0,Hn + 1 est un Hn-bimodule isomorphe à

Hn®Hn 0 Hn.
Hn- i

Démonstration. L'isomorphisme provient de la stabilisation z de Hn
dans + 1 et de l'application de Hn x Hn dans H„ + 1 qui à (m, u) associe

i(u)ani(v). L'application qui s'en déduit respecte les bases (pour la structure
le Hn-module à gauche). C'est donc un isomorphisme.

§ 3. Traces des algèbres de Hecke

Soit n > 0 un entier. Via la stabilisation i de Hn dans Hn + 1, Hn+1

est un H„-bimodule. On peut donc considérer le module En H0(Hn, Hn + 1),

quotient de Hn + 1 par le sous-module engendré par les éléments de la forme:
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ax — xa aei(Hn), xeHn + 1.

Comme précédemment, le produit x induit un produit associatif de

Ap (g) Eq dans Ep+q et E est un A-module gradué.

Proposition 3-1. L'application qui, à tout élément xeHn, associe

l'élément (xxlja,, de Hn + ii 1 étant l'unité de Hv, induit pour tout

n > 0 une application de En_1 dans En. Cette application sera notée 0.

Démonstration. Il suffit de remarquer que <jne Hn+1 commute avec tout
élément stabilisé d'un élément de Hn^1.

Notations 3-2. On désignera par s0 la classe de leH1 et, pour tout
n > 0, on posera

Sn Q(Sn-l).

L'application quotient de En dans An+1 sera notée /; / est une forme

A-linéaire surjective, et l'on a: Vrc ^ 0, f(sn) cn + 1.

Proposition 3-3. E est un A-module libre de base {s0, $l9s2....}.

Démonstration. D'après le corollaire 2-6, on a

En A„ © H0(Hn, Hn (g) Hn).
Hn-i

Il n'est pas difficile de montrer que l'application de Hn (g) Hn dans Hn qui
à m (g) d associe vu induit un isomorphisme de H0(Hn,Hn (g) Hn) sur

Hn- 1

H0(Hn-.1, Hn) En_1. Ce qui montre que l'application de A„ © En_1 dans

En, qui à u © v associe us0 + 6(v), est un isomorphisme.
On en déduit, par récurrence sur n, la formule

En A„s0 © A^-LS-L © © A0s„,

ce qui montre le résultat cherché.

Lemme 3-4. L'algèbre A est engendrée par les éléments ct,i > 1.

Démonstration. La formule

En A„s0 © A^iSi © © A0s„

montre que A„ + 1 est engendré par les sous-modules A„_iCi+1, pour i variant
de 0 à n. Comme ceci a lieu pour tout n > 0, on en déduit le résultat.

I 25
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Lemme 3-5. L'algèbre A est commutative.

Démonstration. Soient o et t deux tresses. Comme les tresses g x x

et t x a sont clairement conjuguées, les traces de a et de t commutent
dans A. Comme de plus les classes ct proviennent de tresses, A est commutatif.

Soit (p une fonction de Z dans N à support fini. Le module
M(cp) (voir § 2) est un module libre de dimension fini sur l'anneau

K Z[X, X~1, p, p-1] et l'algèbre Hn (n étant égal au poids de cp) agit
sur M(cp). Pour tout élément u de Hn on notera t^u) la trace de l'endo-

morphisme de M((p) induit par la multiplication par u. Comme tç est

linéaire et prend la même valeur en uv qu'en vu, induit une application
linéaire L{J, de A„ dans K que l'on prolongera par 0 sur tous les modules

Ap, p i=- n. Ainsi, l'application T9 est une application /c-linéaire de A dans K.

Lemme 3-6. On a la formule :

T9(cn) r-^+ p)*-1

k désignant le cardinal du support de (p.

Démonstration. Soit S le support de (p. C'est une partie de Z à k

éléments. Par définition M((p) a une base £((p) formée des fonctions / de

Xn {1, 2,..., n} dans S telles que pour tout i de S, / prend la valeur i

exactement cp(i fois. Si l'on munit M(cp) d'un produit scalaire < > tel

que 5((p) soit une base orthonormée, on a

T„(c») Z </' S1S2 - «„-!(/)> •

JfeJB(q>)

Soit / un élément de la base ß(cp). L'élément Sn-^f) est de la forme

qf + 6/°8n_1, b étant supposé nul si / prend les mêmes valeurs en n

et en n — 1. Comme la valeur de /os„_1 en n n'est pas modifiée après

action des éléments st,i < n — 1, on a

</, 5jS2 s„_1(/)> a</, S!S2 s„_2(/)>

Si f{n — 1) est strictement inférieur à /(n), a est nul. Sinon a est égal à a

ou X + p suivant que f(n— 1) est égal ou non à /(n). En itérant ce

raisonnement de proche en proche, on vérifie la formule

0 si 3i < n tel que f(i) < /(/+1)</>v*-»-.</» -1 V(X+(l), sinon>

p (resp. q) étant égal au nombre d'entiers non nuls i < n tels que f(i)
et égal (resp. strictement supérieur) à f(i+1).
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Si la suite /(l),f(n) est décroissante, q est égal au cardinal de

l'image de / diminué d'une unité, et p est égal à n — 1 — q. Comme de

plus la base 5(cp) ne contient qu'une seule fonction décroissante, on vérifie

aisément le lemme.

Proposition 3-7. Soit cp une fonction de Z dans N de poids

n =z p 4- q. Soient u et v deux éléments de Ap et Aq. Alors on a

T9{uv) XT9,(u)V>),
la sommation ayant lieu sur toutes les fonctions cp' de poids p, comprises

au sens large entre 0 et (p.

Démonstration. Désignons par Hp x Hq l'image par l'application x de

Hp 0 Hq dans Hn. Le module M((p) est isomorphe, en tant que Hp x Hq-
module à la somme directe des modules M(cp') 0 M((p — cp'), <P' appartenant
à l'ensemble des fonctions de poids p et comprises entre 0 et (p. Soient x
et y des représentants de u et v dans Hp et Hq. Comme la trace de

u 0 p agissant sur M(cp') 0 M(cp —cp') est égal au produit de la trace de u

agissant sur M(cp') par la trace de v agissant sur M(cp —cp'), on obtient
le résultat cherché.

Corollaire 3-8. Soit cp une fonction à support fini de Z dans N.
Soit s une bijection de Z dans Z. Alors les formes linéaires T9 et T908

sont égales.

Démonstration. D'après le lemme 3-6 T9 et T(po£ prennent la même valeur
sur les éléments cn de A. D'après la proposition 3-7, si, pour tout cp,

T9 et T(poe prennent les mêmes valeurs en u et en v, elles prennent, pour
tout cp, la même valeur en un. On en déduit que T9 et T(poe sont égales
quel que soit cp.

Il en résulte que 7^ ne dépend que de la partition du poids n de cp

en les nombres cp(p). Cette partition est caractérisée par la suite finie
Pi,p2,... ; Pi désignant le nombre de fois où cp prend la valeur i. On notera
alors T9 sous la forme Tu, où u est le mot cpf cp22...

§4. La trace T

Soit x (X| une famille de symboles. On désignera par A(x) l'algèbre
des séries en les xt- à coefficients dans K Z[X, p, p-1]. Un élément de
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