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UNE CARACTÉRISATION DES NORMES EUCLIDIENNES
EN DIMENSION FINIE

par Georges Lion

Introduction

Depuis l'énoncé de la relation du parallélogramme, par Jordan et Von

Neumann (voir [5]), sont apparues de nombreuses caractérisations des structures

euclidiennes sur un espace vectoriel réel E, de dimension finie n (voir [1]
et [7]). Ces caractérisations sont assez souvent énoncées sous forme de

théorèmes d'existence (par exemple existence de projecteurs par A. Robert

dans [9]), mettant en lumière la « richesse » spécifique des structures
euclidiennes au sein des structures d'espaces normés. D'autres caractérisations

sont données par J. W. Robbin [8] et H. Rosenthal [10], respectivement
en termes d'algèbres de Lie, et de dimension.

C'est dans cet esprit que nous nous proposons de caractériser les structures
euclidiennes par une propriété de l'ensemble des isométries qui leur sont
attachées :

Dans l'espace vectoriel ^(E) des endomorphismes de E, muni de la

norme des opérateurs, la boule unité admet pour seuls points extrémaux les

isométries de E si, et seulement si, E est euclidien.

Résumons les étapes de la démonstration. Si N désigne la norme étudiée,
et le groupe des isométries linéaires associées à N, il existe alors une
structure euclidienne sur E, telle que tout élément de (SN soit une isométrie
euclidienne. Le résultat, vrai pour tout groupe compact, et déjà signalé
dans [10], est un cas particulier du fait que toute représentation linéaire
d'un groupe compact est unitaire.

L'inclusion de étant établie, on démontre que, si N n'est pas
euclidienne, la structure de la boule unité BN permet de définir un projecteur
de norme 1 qui n'est pas barycentre d'isométries.

En revanche, dans un espace euclidien, tout endomorphisme de E de

norme C 1, est barycentre d'isométries; c'est un cas très particulier de la
version réelle du théorème de Russo Dye (voir [3], [6], [11]).
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Notre travail s'achève par l'étude d'un exemple qui illustre doublement
ce qui précède: à la structure euclidienne dans R2, correspond la norme des

opérateurs dans i?(R2), R espace de dimension 4; ainsi apparaît une norme
non euclidienne dans R4. Mais l'introduction des opérateurs d/dz et d/dz

permet de surcroît d'identifier i?(R2) à C2, et de reconnaître dans la norme
étudiée la norme l1 de C2. Si F désigne le groupe des isométries R linéaires
de i?(R2) dans lui-même, on peut distinguer dans F trois sous-groupes
intéressants :

1) Un sous-groupe isomorphe à 0(2) x 0(2).

2) Le groupe des éléments de F de déterminant -h 1, image de

0(2) x 0(2) par la représentation d'indice 2 définie ainsi: Si v et w
appartiennent à 0(2), on note Qvw l'application ui-^vuw'1, de i?(R2) dans lui-
même; Ov w est une isométrie de déterminant 1, et toute telle isométrie

peut s'écrire &v w pour un double choix du couple (v, w).

3) Le groupe des éléments C-linéaires de T, dans lequel opère
naturellement le groupe c2 à 2 éléments, ce qui le rend isomorphe au produit
semi-direct de S0(2) par lui-même.

Je remercie le référé pour la documentation intéressante qu'il m'a
signalée.

I. Groupe des isométries linéaires

Dans ce paragraphe p désigne une fonction définie et continue dans R",
à valeurs strictement positives hors de 0, positivement homogène (pour que p
soit une norme il faudrait en plus que p soit symétrique et sous additive).

On note l'ensemble des applications linéaires u de R" dans R",
telles que p ° u p.

Lemme 1. est un groupe compact.

Démonstration. ^p est stable pour la composition des applications ; tout u

de ^ est inversible car la relation u(x) 0 implique p(x) p ° u(x) 0,

d'où x 0. yp est fermé en vertu de la continuité de p.

Etant continue, p atteint sur la sphère euclidienne unité une borne
inférieure a > 0, et une borne supérieure i;ona donc, pour ue^p\

A II x II ^ p(x) p o u(x) ^ a II u(x) Il
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Par conséquent est un sous-ensemble borné de J£?(Rn), espace vectoriel des

endomorphismes de R", normé par

Il w II - sup II u{x) Il

Il x II 1

Lemme 2. Pour tout groupe compact <3 contenu dans i^(R"), il existe

une forme quadratique ®, à valeurs strictement positives hors de 0, et

invariante par

Démonstration. Soit p la mesure de Haar du groupe et cp une forme

quadratique, à valeurs > 0 hors de 0; en posant ® cp o udpfu), on

définit une forme quadratique qui a les propriétés requises.

D'une autre façon, on peut appliquer un théorème démontré par
Hochschild ([4], XV 3-1): G1 étant la composante connexe de l'élément neutre
du groupe de Lie G, on suppose G/G1 fini; il existe alors un sous-groupe
compact K, tel que tout autre sous-groupe compact de G soit contenu
dans un conjugué de K ; dans le cas présent on prend G GL(n, R), et
le rôle de K peut être joué par 0(n) qui en est un sous-groupe compact
maximal.

II. La boule unité de £?{E)

Soit E un espace vectoriel réel de dimension finie n, muni d'une norme N,
et E£{E) l'espace vectoriel des endomorphismes de E muni de la norme JE
des opérateurs:

Jf{u) sup N o u(x).
N(x) 1

Soit é%N la boule unité fermée de J?(E).

Lemme 1. Soit N non euclidienne, l'ensemble des isométries
linéaires pour N, XN l'enveloppe convexe fermée de Alors l'inclusion
jTn cz est stricte.

Démonstration. Le choix d'une base de E permet de se ramener à la
situation du paragraphe I, et de prouver l'existence d'une forme quadratique
> 0 hors de 0, invariante par &N. Munissons E de la structure euclidienne
définie par cette forme quadratique; de cette façon est contenu dans
le groupe des isométries euclidiennes de E
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Par ailleurs posons BN {x g E | N(x) ^ 1} ; si BN était une boule
euclidienne, la norme N serait proportionnelle à la norme euclidienne de E, et

serait elle aussi euclidienne.

Il existe donc deux éléments de E, notés xx et x2, tels que N(x1)
N(x2) 1, et que x1 et x2 soient de normes euclidiennes distinctes;

xx et x2 engendrent un espace vectoriel F de dimension 2, et BN n F
n'est pas un « disque ». Nous allons montrer par l'absurde que BN n F
admet en au moins un point x0 une droite d'appui D0 (voir [2] § 5, déf. 3)

non orthogonale à x0.
Si ce n'était pas le cas, la frontière du convexe BN n F pourrait alors être

définie par une équation polaire du type p /(0), où / serait dérivable

par suite de l'unicité de la droite d'appui (voir [9]); mais cette droite
d'appui étant orthogonale au « rayon », on aurait nécessairement /'(0) 0

pour tout 0, donc /(0) constante, ce qui contredit le fait que x1 et x2
sont de normes euclidiennes distinctes.

L'existence de x0 est donc établie ; en vertu du théorème de Hahn Banach

(voir [2] § 5), Bn admet en x0 un hyperplan d'appui H0 contenant D0,
donc non orthogonal à x0 (notons que H0 peut ici être construit par récurrence

puisque la dimension de E est finie). Par symétrie, BN admet en — x0 un
hyperplan d'appui parallèle à H0.

Soit v la projection de E sur Rx0, parallèlement à H0. On a v(BN)

a Bn, donc .jV(v) 1, et veMN, Par ailleurs j[ v || sup || v(x) || > 1,
Il x 8 « i

car v augmente strictement la norme euclidienne de tout vecteur non nul

orthogonal à H0. Nous allons montrer que v appartient à MN\ifN.

Remarquons d'abord que J'f(E) est de dimension n2, et donc tout élément
de Jfjv peut s'exprimer comme barycentre d'au plus n2 + 1 éléments de

(théorème de Carathéodory, [2] § 2 exercice 9).

Si l'on avait v e il existerait alors

tels que v — ^ vt et 1 £ at. Chaque vt est une isométrie euclidienne
m m

(inclusion de yN) ; on aurait donc

m m

1 < II v II ^ X aî II vi II Yjai ^
' d'où la contradiction

î î
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Lemme 2. Munissons E d'une norme euclidienne; soit la boule unité

qu'on en déduit dans £f(E). Alors tout élément extrémal ([2] § 7, déf. 1)

de est une isométrie euclidienne de E.

Démonstration. On suppose le résultat acquis pour la dimension n — 1 ;

soit u g 5£(E\ tel que || u || 1, mais que u ne soit pas une isométrie. Il
existe xx g E, tel que || «(xj || || xx || > 0; composant u avec une rotation,

on se ramène au cas où u(xt) xx.
L'orthogonal F de est stable par u; en effet pour yeV et te R,

on a
Il u(xx + ty) Il

2 < Il xi + ty II
2

c'est-à-dire

Il m(xx) Il
2 + 2t(x11 u(y)) + t2 II u(y) ||

2 ^ || xx ||
2 + t2 || y ||

2

d'où (xj | u(y)) 0, u(y) e V, u(V) a V.

Mais la restriction de u à F n'est pas une isométrie (car alors u en

serait une). D'après l'hypothèse de récurrence, on peut écrire

u\v (iq + u2)/2, où u1 ^ u2 et || ux | || u2 |{ 1

On peut prolonger ux et u2, de F à E, en üt et u2e& tels que les

restrictions de ux et u2 à Rxx soient l'identité. Comme u (u1-hu2)/2 et
ü± ^ u2, u n'est pas un point extrémal de

Désormais pour tout convexe A, on note ôA l'ensemble des éléments

extrémaux de A.

Théorème 1. Soit E espace vectoriel réel de dimension finie. Alors

1) Pour toute norme N sur E, on a a d0$N.

2) L'égalité d&N, équivaut à l'assertion : N est euclidienne.

Démonstration.

1) Soit ugc§n. Supposons que u (u1 + u2)/2, avec ux et u2e&N.
Si Bn est la boule unité fermée de E, on a u{ôBN) dBN. Pour xedBN,
l'égalité u(x) (w1(x) + w2(x))/2 implique a x(x) u2(x) u{x). Les restrictions
de a, ux et u2 à dBN sont identiques, donc u ux u2, et finalement
u g d&N.

2) D'après le lemme 1 ci-dessus, on a d@N # lorsque N n'est pas
euclidienne. Inversement supposons N euclidienne ; le lemme 2 permet d'écrire
d@N c= <gN. Puisque, d'après 1), l'inclusion inverse a lieu, on en déduit
d@N <&N.
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III. Application au cas n 2

Nous considérons désormais E R2, espace vectoriel que nous identifions
à C. L'espace i?(R2) est, comme ci-dessus, normé par || u || sup | u(z) \

|z| < 1

(attention, u h-> || u || n'est pas euclidienne ; est la boule unité de S£(R2).

Rappelons que si z x + iy, on pose

Lemme 1. Uapplication u i—> (du/dz, du/dz), de J£?(R2) vers C2, est un

R-isomorphisme, et \\ u \\ \ du/dz | + | du/dz |.

Démonstration.

On a u(z) du/dz z + du/dz z, d'où | u(z) | ^ (| du/dz | + | du/dz \) \ z\ et

en posant du/dz rel0, du/dz pel<p, on obtient

| u(eii<?-°)12) | r + p

Lemme 2. Soit u e =£f(R2), u ^ 0, u tel que u/\\ u || ne soit pas une

isométrie. Alors :

1) Il existe v et w isométries de R2, a et ß > 0, tels que

u az; + ßw et || u || a + ß.

2) La solution unique du problème est donnée par

a *= | du/dz | ß | du/dz | av(z) du/dz z ßw(z) — du/dz z

Démonstration. La solution explicitée convient d'après le lemme 1.

Démontrons l'unicité:

Soit z0 non nul, tel que | u(z0) \ (a+ ß) | z0 |. On a par ailleurs

L'égalité des termes extrêmes, jointe au signe de a et ß, implique v(z0)

w(z0); et ceci ne peut se produire que lorsque r et w sont respectivement

holomorphes et antiholomorphes, car v =£ w.

Il existe donc A et B dans C*, tels que

d'où u(z) Az L Bz, ce qui entraîne A du/dz et B du/dz, et l'on en

déduit les valeurs de a et ß, puis v et w.

et

I W(z0) | ^ I a v{z0)+ ßw(z0) | < (a+ ß) I z0 I

av(z) Az ßw(z) Bz
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Notation. On qualifiera désormais de paire (resp. d'impaire) toute iso-

métrie de déterminant + 1 (resp. — 1).

Remarque. On vérifie que la frontière de B ne contient aucun convexe de

dimension ^ 2 ; la norme u\-+\\u || est « presque » strictement convexe.

Le fait est important pour l'étude des isométries linéaires de i?(R2), à

laquelle nous allons nous consacrer désormais.

Lemme 3. Soit O une isométrie linéaire de JZ(R2) dans lui-même.

Alors :

1) <D conserve (resp. inverse) la parité des isométries de R2.

2) Les applications

cu/cz i—> c/cz 0(w) et cu/cz h-» c/cz O(w)

[resp. cu/cz i— c/cz <P(u) et cu/cz i—» c/cz 0(u))

appartiennent au groupe orthogonal 0(2).

Démonstration. 1) Soit v et w des isométries de parités opposées;

quels que soient a, ß > 0 avec a + ß 1, on a || ccv + ßw || 1 donc
II ®(ocu + ßw) | 1. Or 0(at; + ßw) a<£(r) + ßO(vv). Puisque O(r) et O(w)

sont des points extrémaux de ce sont des isométries de R2; à l'inverse

yv + ßw et a<D(r) + ßO(w) ne sont pas des isométries; d'après le lemme 2,

®(r) et <L(w) sont de parités opposées. Ainsi pour toute isométrie impaire w,
<D(w) est de parité opposée à celle de 0(1), ce qui implique que pour toute
parité paire v, 0(u) est de même parité que 0(1).

2) Plaçons-nous dans le premier cas, et utilisons l'identification de if(R2)
avec C2 découlant du lemme 1.

Si Z (zl5z2) (z1;0) + (0, z2) alors 0(Z) O[(z1;0)] + O[(0, z2)]
d'où dans le cas envisagé :

<£>(Z) (cp^Zi), 0) + (0, cp2(z2)).

Les applications cpx et (p2 sont clairement R-linéaires de C dans C, et en
faisant successivement z1 0 et z2 0, on obtient | cp^zj | | zx | et
I ^2(zi) I I z2 I

• On ramène le second cas au premier en composant <P

avec l'application n: (zl5 z2) -> (z2, zj, qui est bien une isométrie de if(R2).

Prenons dans chaque facteur du produit C2 une base orthonormée ; la
matrice de O est alors de l'un des deux types suivants :

/®1 0 ®2\
(o ou Ai 0 J
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(<!>! et ®2 sont des matrices 2x2 orthogonales). Selon les signes respectifs des

déterminants de ®x et ®2 on obtient 8 composantes connexes dans le

groupe T des isométries de i?(R2).
Soit F1 la composante neutre de F, qui est clairement isomorphe à

50(2) x SO(2). Introduisons

CFi : (z1, z2) i-+ (z1, z2), a2 : (z:, z2) h-+ (zx, z~2),

et dressons la liste des composantes de F :

r i o^r1! a2rx cr2cj1r1

TCL1 TCG^ ^ TCÇJ21-' ^ Tucr20yL

Les 4 composantes de la lre ligne forment un groupe isomorphe à

0(2) x 0(2); c'est le groupe des isométries de J£(R2) qui conservent la

parité, c'est-à-dire qui ont une matrice du 1er type. Les 2 composantes de

la colonne de gauche constituent le groupe des isométries C-linéaires de C2.

Dans ce groupe F' opère naturellement le groupe {/, 7t} noté c2, si bien que
F est isomorphe au produit semi-direct de 50(2) par lui-même.

Enfin les composantes situées dans les 2 colonnes extrêmes du tableau
forment le groupe des isométries de déterminant 1 ; on note 5r ce groupe.

Pour v et w g 0(2), et u g =^(R2), posons 0>VtW{u) vuw"1.

Théorème 2. Uapplication (v, w) i—» ®y w est une représentation linéaire
de 0(2) x 0(2) sur le groupe SF, dont le noyau a 2 éléments.

Démonstration. ®y w est une isométrie, en effet :

II VUW~X II ^ II V II II U II II W-1 II Il W II Il V~1VUW~1W II < Il VUW-1 II

L'application (v, w) i—> ®y w est évidemment un morphisme de groupes ; montrons

que cette application envoie 50(2) x 50(2) sur Fx.
Soit (z1, z2) i—> (kz1, pz2) un élément de Fid^l |ja| 1). Il s'agit de trouver

y et w de module 1 tels que vw~l X et vw~l p c'est-à-dire v2 X\i

et w
1

; le problème admet donc deux couples opposés pour solutions.

On en déduit enfin que l'application étudiée applique 0(2) x 0(2) sur

5r, composante sur composante, selon le schéma suivant :

pour v paire, w impaire : Q>VtWenFl9

pour v impaire, w paire :
w g 7ra2alr1,

pour v et w impaires : ®y w e a2a1T 1.
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