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UNE CARACTERISATION DES NORMES EUCLIDIENNES
EN DIMENSION FINIE

par Georges LION

INTRODUCTION

Depuis ’énoncé de la relation du parallélogramme, par Jordan et Von Neu-
mann (voir [5]), sont apparues de nombreuses caractérisations des structures
euclidiennes sur un espace vectoriel réel E, de dimension finie n (voir [1]
et [7]). Ces caractérisations sont assez souvent énoncées sous forme de
théorémes dexistence (par exemple existence de projecteurs par A. Robert
dans [9]), mettant en lumiére la « richesse » spécifique des structures eucli-
diennes au sein des structures d’espaces normés. D’autres caractérisations
sont données par J. W. Robbin [8] et H. Rosenthal [10], respectivement
en termes d’algebres de Lie, et de dimension.

C’est dans cet esprit que nous nous proposons de caractériser les structures
euclidiennes par une propriét¢ de I'ensemble des isométries qui leur sont
attachées:

Dans lespace vectoriel F£(E) des endomorphismes de E, muni de la
norme des opérateurs, la boule unité admet pour seuls points extrémaux les
isométries de E si, et seulement si, E est euclidien.

Résumons les ¢tapes de la démonstration. Si N désigne la norme étudiée,
et ¥y le groupe des isométries linéaires associées a N, il existe alors une
structure euclidienne sur E, telle que tout élément de ¥, soit une isométrie
euclidienne. Le résultat, vrai pour tout groupe compact, et déja signalé
dans [10], est un cas particulier du fait que toute représentation linéaire
d’un groupe compact est unitaire.

L'inclusion de ¥ étant établie, on démontre que, si N n’est pas eucli-
dienne, la structure de la boule unité By permet de définir un projecteur
de norme 1 qui n’est pas barycentre d’isométries.

En revanche, dans un espace euclidien, tout endomorphisme de E de
norme < 1, est barycentre d’isométries; c’est un cas trés particulier de la
| version reelle du theoréeme de Russo Dye (voir [3], [6], [11]).



14 G. LION

Notre travail s’achéve par I'étude d’un exemple qui illustre doublement
ce qui précéde: a la structure euclidienne dans R?, correspond la norme des
opérateurs dans #(R?), R espace de dimension 4; ainsi apparait une norme
non euclidienne dans R* Mais l'introduction des opérateurs 0/0z et 0/0z
permet de surcroit d’identifier #(R?) a C?, et de reconnaitre dans la norme
étudiée la norme [* de C2. Si I' désigne le groupe des isométries R linéaires
de #(R?) dans lui-méme, on peut distinguer dans I' trois sous-groupes
intéressants:

1) Un sous-groupe isomorphe a O(2) x O(2).

2) Le groupe des éléments de 1 de déterminant + 1, image de
0(2) x O(2) par la représentation d’indice 2 définie ainsi: Si v et w appar-
tiennent & O(2), on note @, ,, lapplication u > vuw™ !, de L(R?) dans lui-
méme; @, , est une isométrie de déterminant 1, et toute telle isométrie
peut s’écrire @, ,, pour un double choix du couple (v, w).

3) Le groupe des éléments C-linéaires de 1, dans lequel opere natu-
rellement le groupe ¢, a 2 éléments, ce qui le rend isomorphe au produit
semi-direct de SO(2) par lui-méme.

Je remercie le référé pour la documentation intéressante qu’il m’a
signalée.

I. GROUPE DES ISOMETRIES LINEAIRES

Dans ce paragraphe p désigne une fonction deéfinie et continue dans R”,
a valeurs strictement positives hors de 0, positivement homogene (pour que p
soit une norme il faudrait en plus que p soit symétrique et sous additive).

On note ¥, l'ensemble des applications lin¢aires u de R" dans R”"
telles que pou = p.

LEMME 1. ¥, est un groupe compact.

p

Démonstration. %, est stable pour la composition des applications; tout u
de %, est inversible car la relation u(x) = O implique p(x) = p e u(x) = 0,
d’ou x = 0. 4, est fermé en vertu de la continuité de p.

Etant continue, p atteint sur la sphere euclidienne unité une borne infé-
rieure a > 0, et une borne supérieure A ; on a donc, pour u e %,:

Al x| Zpx) =poux) =alux)]|.
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Par conséquent ¢, est un sous-ensemble born¢ de #(R”"), espace vectoriel des
endomorphismes de R”, normé par

lul = sup [ulx)l.

>l =1

LEMME 2. Pour tout groupe compact % contenu dans Z(R"), il existe
une forme quadratique ®, a valeurs strictement positives hors de 0, et
invariante par 4.

Démonstration. Soit p la mesure de Haar du groupe 4, et ¢ une forme

quadratique, a valeurs > 0 hors de 0; en posant ® = J © o udp(u), on
K7

définit une forme quadratique qui a les propriétés requises.

D’une autre fagon, on peut appliquer un théoréme démontré par
Hochschild ([4], XV 3-1): G, étant la composante connexe de ’élément neutre
du groupe de Lie G, on suppose G/G, fini; il existe alors un sous-groupe
compact K, tel que tout autre sous-groupe compact de G soit contenu
dans un conjugué de K; dans le cas présent on prend G = GL(n, R), et
le role de K peut étre joue par O(n) qui en est un sous-groupe compact
maximal.

II. LA BOULE UNITE DE #(E)

Soit E un espace vectoriel réel de dimension finie n, muni d’une norme N,

et Z(E) lespace vectoriel des endomorphismes de E muni de la norme A~
des opérateurs:

A(w) = sup N oux).

N(x) =1

Soit #y la boule unité fermée de L(E).

LEMME 1. Soit N non euclidienne, %y [lensemble des isométries

linéaires pour N, Ay [lenveloppe convexe fermée de Gy. Alors linclusion
Ay < HBy est stricte.

Démonstration. Le choix d’une base de E permet de se ramener a la
situation du paragraphe I, et de prouver I’existence d’une forme quadratique
> 0 hors de 0, invariante par %y. Munissons E de la structure euclidienne

définie par cette forme quadratique; de cette fagon %y est contenu dans
le groupe des isométries euclidiennes de E
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Par ailleurs posons By = {x € E | N(x) < 1}; si By était une boule eucli-
dienne, la norme N serait proportionnelle a la norme euclidienne de E, et
serait elle aussi euclidienne.

Il existe donc deux éléments de E, notés x; et x,, tels que N(x,)
= N(x,) = 1, et que x; et x, soient de normes euclidiennes distinctes;
x; et x, engendrent un espace vectoriel F de dimension 2, et Byn F
n’est pas un «disque ». Nous allons montrer par 'absurde que By n F
admet en au moins un point x, une droite d’appui D, (voir [2] § 5, déf. 3)
non orthogonale a x,.

Si ce n’était pas le cas, la frontiére du convexe By n F pourrait alors étre
definie par une €quation polaire du type p = f(0), ou f serait dérivable
par suite de l'unicité de la droite d’appui (voir [9]); mais cette droite
d’appui ¢étant orthogonale au « rayon », on aurait nécessairement f'(6) = 0
pour tout 6, donc f(0) constante, ce qui contredit le fait que x; et x,
sont de normes euclidiennes distinctes.

L’existence de x, est donc établie; en vertu du théoreme de Hahn Banach
(voir [2] §5), By admet en x, un hyperplan d’appui H, contenant D,
donc non orthogonal a x, (notons que H, peut ici €tre construit par récurrence
puisque la dimension de E est finie). Par symétrie, By admet en —x, un
hyperplan d’appui parallele a H,,.

Soit v la projection de E sur Rx,, parallelement a H,. On a u(By)

< By, donc A (v) = 1, et ve ABy. Par ailleurs | v || = sup | ov(x) | > 1,

Ix]l <1
car v augmente strictement la norme euclidienne de tout vecteur non nul
orthogonal a H,. Nous allons montrer que v appartient a Zy\A y.

Remarquons d’abord que Z(E) est de dimension n?, et donc tout élément
de Ay peut sexprimer comme barycentre d’au plus n® + 1 éléments de
94y (théoreme de Carathéodory, [2] § 2 exercice 9).

Si 'on avait v € Ay, il existerait alors

{vl,vz,..., UV, E DGy (m<n?+1)

gy ULyy ey Uy € 10, 1[

m

m
tels que v = » o;u; et 1 = ) o;. Chaque v; est une isométrie euclidienne
T T

(inclusion de %y); on aurait donc

m m
<ol <Yollvll =)o =1; doula contradiction .
1 1
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LEMME 2. Munissons E dune norme euclidienne; soit % la boule unité
qwon en déduit dans L(E). Alors tout élément extrémal ([2]8§7, def. 1)
de A est une isométrie euclidienne de E.

Démonstration. On suppose le résultat acquis pour la dimension n — 1;
soit ue Z(E), tel que | u| = 1, mais que u ne soit pas une isométrie. Ii
existe x, € E, tel que || u(x;) | = || x; || > 0; composant u avec une rotation,
on se rameéne au cas ou u(x;) = Xx;.

L’orthogonal ¥ de x, est stable par u; en effet pour yeV et teR,
on a

Fuley+etn) 12 < I xy + v |12,
C’est-a-dire

| u(xo) 12+ 2e(x fu() + 2 Ju@) 12 < I x 12+ 20y )7,

d’ou (x; |u(y)) = 0, uy)eV, uwlV)c V.
Mais la restriction de u a V n’est pas une isométrie (car alors u en
serait une). D’aprés I’hypothése de récurrence, on peut écrire

uly = (up+uy)/2, ou uy #Fu, et Jull=lul|=1.

On peut prolonger u, et u,, de V a E, en u; et u, e # tels que les
restrictions de u, et u, a Rx, soient lidentité. Comme u = (u, +u,)/2 et
u; # u,, u n’est pas un point extrémal de 4.

Désormais pour tout convexe A4, on note dA I'ensemble des éléments
extrémaux de A.

THEOREME 1. Soit E espace vectoriel réel de dimension finie. Alors

1) Pour toute norme N sur E, ona 9y < 0%y.
2) Légalitée 4Gy = 0%y, équivaut d Passertion: N est euclidienne.
Démonstration.

1) Soit ue %y. Supposons que u = (u;+u,)/2, avec u;, et u, e By.
S1 By est la boule unité fermée de E, on a u(0By) = 0By. Pour x € 0By,
Pegalité u(x) = (u,(x)+u,(x))/2 implique u;(x) = u,(x) = u(x). Les restrictions
de u, u; et u, a 0By sont identiques, donc u = u, = u,, et finalement
ueoRy.

2) Drapres le lemme 1 ci-dessus, on a 0%y # ¥y lorsque N n’est pas
euclidienne. Inversement supposons N euclidienne; le lemme 2 permet d’écrire

0By = 9y. Puisque, d’aprés 1), Iinclusion inverse a lieu, on en déduit
5%[\] = gN'
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IIT. APPLICATION AU CAS n = 2

Nous considérons désormais E = R?, espace vectoriel que nous identifions

a C. L’espace Z(R?) est, comme ci-dessus, normé par | u || = sup |u(z)|
lz| <1

(attention, u — || u || n’est pas euclidienne!); % est la boule unité de Z(R?).
Rappelons que si z = x + iy, on pose

1 [0u ou 1 [ 0u ou
ou/fz = - — — i — 7 = —|— +i—].
u/0z > (ax i ay) et Ou/oz 2 <@x + 5y>

LEMME 1. L’application u > (0u/dz, 0u/dz), de L(R?) vers C? estun
R-isomorphisme, et || u | = | du/oz| + | 0u/dz |.

Démonstration.

On a u(z) = 0u/dz z + du/dz z, d’ou | u(z) | < (| 0u/dz | + | dufdz )| z | et
en posant du/0z = re', du/0z = pe'®, on obtient

| (e ) =1+ p.

LEMME 2. Soit ue PR3, u # 0,u tel que u/||u| ne soit pas une
isométrie. Alors:

1) 1l existe v et w isométries de R? o et B >0, tels que
u=ov+ Pw e |ul| =ao+p.

2) La solution unique du probléme est donnée par
o = |0u/dz|, P =|0u/dz|, ow(z) = ouldzz, Pw(z) = ou/izz.

Démonstration. La solution explicitée convient d’aprés le lemme 1.
Démontrons 'unicite:

Soit z, non nul, tel que | u(zy) | = (2+PB)| zo |- On a par ailleurs
| u(zo) | < [ aw(zo) + Pw(zo) | < (a+P) |20 .

L’égalité des termes extrémes, jointe au signe de o et B, implique u(z,)
= w(z,); et ceci ne peut se produire que lorsque v et w sont respecti-
vement holomorphes et antiholomorphes, car v # w.

Il existe donc A et B dans C¥*, tels que

ow(z) = Az, Pw(z) = Bz,

d’ou u(z) = Az + Bz, ce qui entraine 4 = 0u/0z et B = 0u/0z, et 'on en
déduit les valeurs de o et B, puis v et w.
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Notation. On qualifiera désormais de paire (resp. d’impaire) toute iso-
métrie de déterminant + 1 (resp. —1).

Remarque. On vérifie que la frontiére de B ne contient aucun convexe de
dimension > 2; la norme u+ || u | est « presque» strictement convexe.
Le fait est important pour I'étude des isométries linéaires de ZR?), a
laquelle nous allons nous consacrer désormais.

LEMME 3. Soit ® une isométrie linéaire de £(R?) dans lui-méme.
Alors:
1) @ conserve (resp. inverse) la parité des isométries de RZ.
2) Les applications
Cu/éz v 0/Cz D(u) et cu/cz> C/Cz D(u)
(resp. dufcz v ¢/Cz ®(u) et Cu/Cz > C/Cz D(u))

appartiennent au groupe orthogonal O(2).

Démonstration. 1) Soit v et w des isométries de parités opposees;
quels que soient o, >0 avec x + B =1, on a ||av + Pw | = 1 donc
| O(xr+Pw) || = 1. Or O(av+ Bw) = a®(v) + PO(w). Puisque D(v) et O(w)
sont des points extrémaux de 4, ce sont des isométries de R?; a I'inverse
w + Pw et a®(v) + BD(w) ne sont pas des isométries; d’apres le lemme 2,
®(v) et O(w) sont de parités opposeées. Ainsi pour toute isomeétrie impaire w,
®(w) est de parité opposce a celle de @(I), ce qui implique que pour toute
parité paire v, ®(v) est de méme parité que D(I).

2) Plagons-nous dans le premier cas, et utilisons I'identification de .#(R?)
avec C? découlant du lemme 1.

St Z = (z;,2;) = (2,,0) + (0, z;) alors ®(Z) = O[(z, 0)] + D0, z,)]
d’ou dans le cas envisagé:

O(Z) = ((pl(zl)a 0) + (0, P,(2,)) .

Les applications ¢, et ©, sont clairement R-linéaires de C dans C, et en
faisant successivement z; = 0 et z, = 0, on obtient | @,(z,)| = |z, et

-1 0i(z2)| = z;]. On ramene le second cas au premier en composant @
avec I'application n: (zy, z,) = (25, zy), qui est bien une isométrie de Z(R?).

Prenons dans chaque facteur du produit C* une base orthonormée; la
matrice de @ est alors de I'un des deux types suivants:

((Dl 0 0 o,
ou
0 @, ®, 0
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(@, et @, sont des matrices 2 x 2 orthogonales). Selon les signes respectifs des
déterminants de ®; et ®, on obtient 8 composantes connexes dans le
groupe I' des isométries de Z(R?).

Soit I'; la composante neutre de I', qui est clairement isomorphe a
SO(2) x SO(2). Introduisons

C1:(2zy,25) (21, 2,), G,y:(2z1,25) (24, 2,),

et dressons la liste des composantes de I":

Iy oI’y o,y 6,60

nl’y no Iy no,1 no,0,.1

Les 4 composantes de la 17 ligne forment un groupe isomorphe a
0(2) x O(2); cest le groupe des isométries de #(R?*) qui conservent la
parité, c’est-a-dire qui ont une matrice du 1°° type. Les 2 composantes de
la colonne de gauche constituent le groupe des isométries C-linéaires de C2.
Dans ce groupe I'" opéere naturellement le groupe {I, n} noté ¢,, si bien que
I est isomorphe au produit semi-direct de SO(2) par lui-méme.

Enfin les composantes situées dans les 2 colonnes extrémes du tableau
forment le groupe des isométries de déterminant 1; on note SI' ce groupe.

Pour v et w € O(2), et u € L(R?), posons ®, (u) = vuw ™ 1.

THEOREME 2. L’application (v, w)+— @, , est une représentation linéaire
de 0O(2) x O(2) sur le groupe SI', dont le noyau a 2 éléments.

Démonstration. @, ,, est une isomeétrie, en effet:
fouw™ I < HollfullIw™ = Tul = o vuw™ w [ < ouw™ .

L’application (v, w) — @, ,, est évidemment un morphisme de groupes; mon-
trons que cette application envoie SO(2) x SO(2) sur I';.

Soit (z,, z,) — (Az{, nz,) un element de I';(JA|=]|u|=1). 1l s’agit de trouver
1 1

v et w de module 1 tels que vw™! = A et vw™! = p Cest-a-dire v> = Ap
et w = vA~!; le probléme admet donc deux couples opposés pour solutions.

On en déduit enfin que lapplication étudiée applique O(2) x O(2) sur
ST, composante sur composante, selon le schéma suivant:

pour v paire, w impaire: @, , enl,
pour v impaire, w paire: @D, , e nc,o,0,

pour v et w impaires: ®, ,e0,0,;.
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