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trique les transformations qui permettent de passer d'une quadrique non-

singulière X de P3 à une conique de P2 définie sur l'extension discriminant

et ainsi en particulier d'obtenir le principe de Hasse pour ces quadriques.

1.3. Après les travaux de Châtelet.

En 1949, B. Segre tout en rendant hommage au travail de Châtelet

rappelle l'existence du travail de Severi (1932) qui avait échappé à l'attention
de Châtelet, et indique en particulier que Severi par ses méthodes avait

obtenu (d + l)d au point 2) du théorème ci-dessus. C'est dans cet article que

Segre transforme les « variétés de Brauer » de Châtelet en « variétés de

Severi-Brauer ». Convenons qu'il eut été plus juste de les appeler variétés

de Severi-Châtelet.

Alors que la théorie de Châtelet insiste de façon très moderne sur

l'isomorphie sans exceptions, Amitsur en 1955 refait la théorie d'un point
de vue plus birationnel (corps de décomposition « générique » d'une algèbre
centrale simple) et redémontre l'énoncé 2) du théorème ci-dessus. Il établit
le résultat intéressant suivant: si X et Y sont deux /c-variétés de Severi-

Brauer /c-birationnellement équivalentes, les classes a(X) et a(Y) qui leurs sont
associées dans le groupe de Brauer de k engendrent le même sous-groupe.
On ignore si la réciproque vaut. Le point de vue de l'ensemble de cohomologie
H1(Gsd (K/k), PGLd + 1(K)) réapparaît dans un article de Roquette (1963).

Signalons aussi un article d'Amitsur (1981).

Le point de vue moderne sur les variétés de Severi-Brauer qui a été

esquissé plus haut fut dégagé par Serre dans ses livres Corps locaux (1962)
et Cohomologie galoisienne (1965). Après l'introduction des algèbres d'Azu-
maya, qui généralisent les algèbres simples centrales, le corps de base étant
remplacé par un anneau commutatif (Azumaya 1951, Auslander/Goldman
1960), Grothendieck (1965) dans une série magistrale d'exposés sur le groupe
de Brauer d'un schéma étudie les schémas de Severi-Brauer relatifs.

1.4. Importance des variétés de Severi-Brauer.

En arithmétique, les variétés de Severi-Brauer servent de référence dans
l'étude des variétés rationnelles plus générales (une variété X est dite rationnelle

si elle devient birationnellement équivalente (mais non nécessairement
isomorphe) à l'espace projectif sur une extension finie de son corps de base.)
Pour d > 1, aucune des propriétés du théorème ci-dessus ne vaut en général,
mais on peut essayer de trouver des substituts. Nous reviendrons là-dessus
au paragraphe 3.

28



392 J.-L. COLLIOT-THÉLÈNE

En géométrie, i.e. dans l'étude des variétés définies sur le corps des

nombres complexes, les variétés de Severi-Brauer jouent un grand rôle

comme fibre générique de morphismes X -+ Y, dans l'étude des variétés qui
sont « proches d'être rationnelles » : variétés unirationnelles de divers types.
Ainsi, le fameux contre-exemple d'Artin/Mumford (1972) au problème de

Lüroth en dimension 3 (une variété qui est dominée par une variété
rationnelle n'est pas nécessairement rationnelle) est-il fourni par une telle

variété X fibrée au-dessus d'une surface rationnelle 7, la fibre générique
étant une conique sans point rationnel. D'autres variétés de Severi-Brauer

apparaissent dans l'étude des corps d'invariants d'actions linéaires presque
libres de groupes linéaires connexes.

Mais là où les variétés de Severi-Brauer ont sans conteste joué le rôle
le plus important, c'est dans la démonstration des théorèmes de Merkur'ev et

Suslin (1982) sur le groupe K2 des corps, ceci via le calcul de Quillen
(1973) de la K-théorie des schémas de Severi-Brauer. Ces théorèmes ont eu
des applications tant aux algèbres simples centrales sur un corps arbitraire
qu'à l'étude des groupes de Chow des variétés algébriques (classes de cycles

pour l'équivalence rationnelle).

2. Courbes de genre 1

2.1. Avant Châtelet.

En 1901, Poincaré montre qu'une courbe C de genre 1 définie sur un

corps k et qui possède un point /c-rationnel est isomorphe sur son corps de

définition à une courbe elliptique E de Weierstrass :

(E) y2 — x3 + ax + b

laquelle admet naturellement une loi de groupe avec élément neutre le point
à l'infini. Cette loi de groupe en induit une sur l'ensemble E(k) des points
rationnels. Poincaré formule l'hypothèse que pour k le corps Q des rationnels,
le groupe E(Q) est engendré par un nombre fini d'éléments. Ceci fut
démontré par Mordell en 1922 et généralisé par Weil en 1928 au cas où
k est un corps de nombres, et où E est la jacobienne d'une courbe de genre

quelconque. Weil donna aussi une méthode « élémentaire », qui passe par des

« factorisations ». On montre ainsi que pour E donnée par

V (x-e1){x-e2)(x
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