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trique les transformations qui permettent de passer d’une quadrique non-
singuliére X de P? & une conique de P? définie sur I'extension discriminant
et ainsi en particulier d’obtenir le principe de Hasse pour ces quadrigues.

1.3. APRES LES TRAVAUX DE CHATELET.

En 1949, B. Segre tout en rendant hommage au travail de Chatelet
rappelle I'existence du travail de Severi (1932) qui avait échappé a l'attention
de Chatelet, et indique en particulier que Severi par ses méthodes avait
obtenu (d+ 1)* au point 2) du théoréme ci-dessus. C’est dans cet article que
Segre transforme les « variétés de Brauer » de Chatelet en « variétés de
Severi-Brauer ». Convenons qu’il eut été plus juste de les appeler variétés
de Severi-Chatelet.

Alors que la théorie de Chatelet insiste de fagon trées moderne sur
I'isomorphie sans exceptions, Amitsur en 1955 refait la théorie d’'un point
de vue plus birationnel (corps de décomposition « générique » d’une algebre
centrale simple) et redémontre ’énoncé 2) du théoréme ci-dessus. Il établit
le résultat intéressant suivant: si X et Y sont deux k-variétés de Severi-
Brauer k-birationnellement équivalentes, les classes a(X) et a(Y) qui leurs sont
associées dans le groupe de Brauer de k engendrent le méme sous-groupe.
On ignore si la réciproque vaut. Le point de vue de 'ensemble de cohomologie
H'(Gal(K/k), PGL,, (K)) réapparait dans un article de Roquette (1963).
Signalons aussi un article d’Amitsur (1981).

Le point de vue moderne sur les variétés de Severi-Brauer qui a été
esquisse plus haut fut dégage par Serre dans ses livres Corps locaux (1962)
et Cohomologie galoisienne (1965). Apres l'introduction des algébres d’Azu-
maya, qui géneéralisent les algebres simples centrales, le corps de base étant
remplacé par un anneau commutatif (Azumaya 1951, Auslander/Goldman
1960), Grothendieck (1965) dans une série magistrale d’exposés sur le groupe
de Brauer d’un schéma étudie les schémas de Severi-Brauer relatifs.

1.4. IMPORTANCE DES VARIETES DE SEVERI-BRAUER.

En arithmétique, les variétés de Severi-Brauer servent de référence dans
étude des variétés rationnelles plus générales (une variété X est dite ration-
nelle si elle devient birationnellement équivalente (mais non nécessairement
isomorphe) a I'espace projectif sur une extension finie de son corps de base.)
Pour d > 1, aucune des propriétés du théoréme ci-dessus ne vaut en général,
mais on peut essayer de trouver des substituts. Nous reviendrons la-dessus
au paragraphe 3.
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En géométrie, i.e. dans I’étude des variétés définies sur le corps des
nombres complexes, les variétés de Severi-Brauer jouent un grand role
comme fibre générique de morphismes X — Y, dans I’étude des variétés qui
sont « proches d’étre rationnelles »: variétés unirationnelles de divers types.
Ainsi, le fameux contre-exemple d’Artin/Mumford (1972) au probléme de
Luroth en dimension 3 (une variété qui est dominée par une variété
rationnelle n’est pas nécessairement rationnelle) est-il fourni par une telle
variété X fibrée au-dessus d’une surface rationnelle Y, la fibre générique
étant une conique sans point rationnel. D’autres variétés de Severi-Brauer
apparaissent dans P'étude des corps d’invariants d’actions linéaires presque
libres de groupes linéaires connexes.

Mais la ou les variétés de Severi-Brauer ont sans conteste joué le role
le plus important, c’est dans la démonstration des théorémes de Merkur’ev et
Suslin (1982) sur le groupe K, des corps, ceci via le calcul de Quillen
(1973) de la K-théorie des schémas de Severi-Brauer. Ces théorémes ont eu
des applications tant aux algébres simples centrales sur un corps arbitraire
qu’a létude des groupes de Chow des variétes algébriques (classes de cycles
pour ’équivalence rationnelle).

2. COURBES DE GENRE 1

2.1. AvaNT CHATELET.

En 1901, Poincaré montre quune courbe C de genre 1 définie sur un
corps k et qui possede un point k-rationnel est isomorphe sur son corps de
définition a une courbe elliptique E de Weierstrass:

(E) y2 = x>+ ax + b,

laquelle admet naturellement une loi de groupe avec ¢lément neutre le point
a 'infini. Cette loi de groupe en induit une sur Pensemble E(k) des points
rationnels. Poincaré formule I'hypothése que pour k le corps Q des rationnels,
le groupe E(Q) est engendré par un nombre fini d’¢léments. Ceci fut
démontré par Mordell en 1922 et généralis¢ par Weil en 1928 au cas ou
k est un corps de nombres, et ou E est la jacobienne d’une courbe de genre
quelconque. Weil donna aussi une méthode « élémentaire », qui passe par des
« factorisations ». On montre ainsi que pour E donnée par

y2 = (x—e;) (x—e;) (x—e3)
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