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230 F. PAUER AND M. PFEIFHOFER

Compute the greatest common divisor P, of the (univariate) polynomials

in G,. Find a zero a,e R of P,. If P, has no zero in R, then Z(J) = Q.
~ Letke {1, .., n—1}. Suppose that a;, {, ..., a, € R have already been found.

Let Gyag+y, - a,) S R[X,] be the set of polynomials in one variable X,
obtained from G, by substituting everywhere g; for X;, k + 1 <j < n

Compute the greatest common divisor P, of the polynomials in
Glax+q5 - a,). Find a zero a, € R of P,. If P, has no zero in R, we have
to go back to G, and to find another sequence a,,, ..., a4 -

If we obtain (a,,..,a,) by this algorithm, it is an element of Z(/J).
By 4.3. all elements of Z(J) can be computed in this way.

Suppose that Zg(J) is finite (ie. N"—2(G) is finite) and that we are
able to solve univariate polynomial equations in R (which is the case for
= Z). Then the algorithm above yields Z(J) in a finite number of steps.

4.5. Example. Let F be the subset

2XT+3X3X, X, — X X3+5X,-3X3-5X,X;—2X;+41,
AXT+6X3X,X,—2X , X5+10X,+3X3+5X,X;+2X3—11X3+19X;+25,
6X35+10X, X3 +2X3—11X3+21X;—40} of Z[X,,X,,X,].
By the algorithm 3.6. we get a Grobner basis G of the ideal generated by F:
G = {2X3—-11X3+17X,-6,
3X3+5X,X,+2X,—17,
2XT+3X3X,X,— X, X53+5X,+24}.

Now Z(G3) = {2,3}, Z(G,(2)) = {1}, Z(G,(3)) = @ and Z(G,(1,2)) = {—2}.
So Z(F) = {(—=2,1,2)}.

5. APPLICATION TO A (GEOMETRIC PROBLEM

51. For PeR[X] let P be the homogeneization of P by a further
variable X,,;. For an ideal J < R[X] we write J for the ideal generated
by {P|PeJ}in R[X,, .., X,11].

PROPOSITION. Let G be a Grobner basis of J with respect to the
graded inverse lexicographic ordering (see 2.1.). Then G:={P|Pe G} isa
Grébner basis of J.
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Proof. Since we consider the graded inverse lexicographic ordering, we

~

have for all Pe R[X] — {0}:in(P) = in(P). Hence <in(J)> = <in(J)>
= <in(G)> = <in(G)>.

5.2. Example. Let R be a field. Consider the “twisted cubic”
Z:={tt%,t})|teR} = R>.
Then
J:=<X3—X;,X? - X,> <R[X;, X;, X5]

is the ideal of polynomials vanishing on Z.
Recall that the set of zeroes of J in the projective space P;3(R) is the

closure (with respect to the Zariski topology) of Z.

The polynomials X 3 — X3X2 and X? — X,X, do not generate the ideal
J < R[X,,X,, X5, X,]

By36. G:={X?—-X,,X,X, — X;,X} — X,X5}is a Grobner basis
of J with respect to the graded inverse lexicographic ordering. Hence J
is generated by {X? — X, X4, X, X, — X3X,, X5 — X, X3X,}.
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