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Compute the greatest common divisor Pn of the (univariate) polynomials
in Gn. Find a zero an e R of Pn. If Pn has no zero in R, then Z(J) 0.

Let ke {1,..., n— 1}. Suppose that ak+1, ane R have already been found.
Let Gk(ak+1,..., an) ç #[Xk] be the set of polynomials in one variable Xk
obtained from Gk by substituting everywhere cij for Xj9k + 1 ^ j < n.

Compute the greatest common divisor Pk of the polynomials in
Gk(ak+i> •••> an\ Find a zero ahe R of Pk. If Pk has no zero in R, we have

to go back to Gn and to find another sequence a'n,..., ak + 1.
If we obtain (al5..., an) by this algorithm, it is an element of Z(J).

By 4.3. all elements of Z(J) can be computed in this way.

Suppose that ZK(J) is finite (i.e. Nn — @(G) is finite) and that we are
able to solve univariate polynomial equations in R (which is the case for
R Z). Then the algorithm above yields Z(J) in a finite number of steps.

4.5. Example. Let F be the subset

{2XÎ + 3X fX2X3 -X,X I + 5X1 -2X\- 5X2X3 - IX 3 + 41,

4XÎ + 6X\X2X3 -1X^X1+10^! + 3XÏ + 5X2X3 + 2X\- iiX\ + \9X3 + 25,

6Xi + 10X2X3 + 2Xi-llX23 + 2lX3-40} of Z[X1}X2,X3]

By the algorithm 3.6. we get a Gröbner basis G of the ideal generated by F :

G {2X33-llXl + 17X3-6,
3x1 + 5X2X3 + 2X3-17,

2X1 + 3X\X2X3 — XxX 1 + 5XJL + 24}

Now Z(G3) - {2, 3}, Z(G2(2)) {1}, Z(G2(3)) 0 and Z(G1(1, 2)) - {-2}.
So Z(F) {(-2, 1,2)}.

5. Application to a Geometric Problem

5.1. For Pe#[X] let P be the homogeneization of P by a further
variable Xn + 1. For an ideal J ^ #[X] we write J for the ideal generated

by {P\PeJ} in K[Xl5..., X„+1].

Proposition. Let G be a Gröbner basis of J with respect to the

graded inverse lexicographic ordering (see 2.1.). Then G : {P | P e G} is a

Gröbner basis of J.
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Proof. Since we consider the graded inverse lexicographic ordering, we

have for all PeUffl- {0} : m (P) in(P). Hence <in(J)> <in(J)>
< in (G) > < in (G) >.

5.2. Example. Let Rbea field. Consider the "twisted cubic"

Z: {(t, t2,t3)\tÇR3.

Then J:<Xl-X3,Xl - X2> <

is the ideal of polynomials vanishing on Z.

Recall that the set of zeroes of J in the projective space P3(R) is the

closure (with respect to the Zariski topology) of Z.

The polynomials X\ - X3Xl and X\do not generate the ideal

J s: RIX1,X2,X3,X4].
By 3.6. G: {XI —X2,X1X2 - X3,X22 - X^f is a Gröbner basis

of J with respect to the graded inverse lexicographic ordering. Hence J
is generated by {Xj— X2XA, X2X2 — X32f4, X12f3X4}.
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