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(i) not commutative, 1.e., generally, XY # YX (but see (4) (iv) below);

(iii) not associative, i.e., generally, (X)W # X(YW) (but see (7) below).
(4) The real part of X = (q,.4,)is Re X = (Re g, 0) = Re g, . X is said to
be real if X = Re X: ie. (q,.q,) is real iff g, is real and g, = 0.

(i) Re(X+7Y) = Re(X) + Re(Y)

(ii) Re(XY) = Re(YX)

(ili) Re(CX) = 0 for all X implies that C = 0.

(ivi CX = XC for all X iff C is real. In this case, C = (c,,0), where
¢, = real, and CX = (c,q,,¢:9,) = XC.
(5) The conjugare of X = (q;.q,)is X* = (4T. —q>).
i) (X+Y)* = X*+ 7%,
(i) (XY)* = Y*X*
(i) X* = X iff X is real.
(6) The norm of X is the non-negative real number N(X) = XX*, which is

also equal to X*X. The length of X is the non-negative real number
| X | = NX)'? = (XXH)H2
) NX)=0iff X =0.
(i) If X #0, then X! = X* N(X) is a right and left inverse of X.
) N(XY) = NX)N(Y). Tt follows from this that XY = 0 iff X =0
or Y = 0.
(7) Though multiplication is generally non-associative,
i) (XY)Y* = X(YY™).
i) IfY #0,then (XY)Y ' = X = Y }YX)

(i) Re((XY)W) = Re(X(YW)).

APPENDIX 2. THE HOPF FIBERING AND MUTUALLY ISOCLINIC PLANES

At the beginning of § 4, we described how H. Hopf obtained his fibering
of $"~1 by S§"7! over S",n = 2,4, or 8, by intersecting the unit sphere
S$**~1 in R = Q, x Q, with the Q,lines ¥ = CX and X = 0. In
Theorem 5.2, we proved that the Hopf fibering and maximal set of mutually
isoclinic n-planes in R*" are equivalent concepts. Here we prove, directly, the
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THEOREM A2.1. The set of Q,-lines {Y = CX,X =0} in Q, x Q,,
when viewed as n-planes in R*", are mutually isoclinic n-planes.

Proof. We shall prove the theorem for the case n = 8 only. The proof
for the cases n = 2, 4 follows the same line and is simpler.

Some preliminaries are necessary. Suppose that under the identification
of Qg x Qg with R!® as in Theorem 5.1, the elements (X,Y), (X, Y
of Qg x Qg become the vectors (X, Y), (X', Y') in R'® with respectively
the components (x;, ..., X;¢), (X7, ..., X1¢). Then it can easily be verified that
the inner product of the two vectors (X, Y) and (X', Y’) is

P

6
<(X,Y),(X,Y)> = ) xx; = Re(XX*+YY'¥).
i=1
It follows from this that the length of the vector (X, Y) is
(X, Y)] = <(X,Y),(X, V)>"? = (XX*4+YY*2

and that the two vectors (X, Y) and (X', Y') are orthogonal if and only if
Re (XX*+YY'™) = Q.

We can now prove our theorem by showing that in R!® the 8-plane
A:Y = AX is isoclinic with the 8-planes B: Y = BX and O': X = 0.

Let (T, BT)e B be the projection of any nonzero vector (X, AX)e A
on B. Then the vector (X—T, AX—BT) is orthogonal to B, ie, it is
orthogonal to all the vectors (W, BW) e B, where W is an arbitrary Cayley
number. Therefore,

(A.1) Re{(X—-T)W* + (AX—BT)BW)*} =0 forall WeQs.

Since, by (4) (i) and (7) (ii1) in Appendix 1, the terms inside the brackets
inRe { }arecommutative and associative, the left-hand side of (A.1) is equal to

Re {(X —T)W* + [(AX —BT)W*]B*}
= Re {(X—T)W* + [B¥(AX —BT)]W*}
= Re {(X—T)W* + [(B¥*4)X — (B*B)T]W*}
= Re {[X—T+(B*4A)X —(B*B)T]W*} .
Therefore, by (4) (iii) in Appendix 1, condition (A.1) implies that
X — T+ (B¥A)X — (B*B)T =0,
and hence

(A.2) T = (1+B*A)X/(1+B*B).




ISOCLINIC PLANES 203

S
I

Now, the squared length of the vector (X, AX) is

(X, AX)|? = XX* + (AX) (AX)*
— XX* + AA*XX*,

1.e.,
(A.3) | (X, AX)|? = (1+A*A)XX*.
Similarly,
|(T,BT)|* = (1+B*B)TT*.
But by (A.2),
TT* = (14+B*A)X[(1+ B*4)X]*/(1+ B*B)?
= (1+B*A) (1+ A*B)XX*/(1+ B*B)*.
Therefore,
(A.4) |(T,BT)|? = (1+B*A) (1+ A*B)XX*/(14+ B*B).

Hence, it follows from (A.3) and (A.4) that the angle 0 between the vector
(X, AX) € A and its projection on B 1s given by
20 — | (T, BT)|? ~ (1+4*B)(1+B*4)
SV T, AX) 2 T (1+4%A) (1+B*B)’

which shows that the angle between any nonzero vector (X, AX) € A and its
projection on B is independent of the choice of X ; that is, the 8-plane A is
isoclinic with the 8-plane B.

Finally, to show that the 8-plane A: Y = AX is isoclinic with the 8-plane
O': X = 0, we need only observe that the projection of the nonzero vector
(X, AX) e A on O* is the vector (0, AX), and

1(0, AX)|2 (AX)(AX)* A4

(X, AX)|?>  (1+A*AXX* 1+ AA*

1s independent of X.
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