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396 J.-L. COLLIOT-THÉLÈNE

générale fut développée par E. Lutz (1937) et A. Weil (1936), qui étudièrent
la structure du groupe topologique E(k) lorsque k est un corps p-adique (ce

qu'on peut transcrire aujourd'hui au moyen des groupes formels et des

modèles de Néron). Châtelet attira l'attention sur le fait que la méthode
d'E. Lutz permet la détermination effective des points exceptionnels lorsque
le corps de base k est un corps de nombres quelconque. Dans une note
de 1940, Châtelet observe que les résultats de Lutz permettent de borner
uniformément la torsion des courbes elliptiques définies sur un corps de

nombres k et d'invariant j fixé (il suffit de se placer sur une complétion
p-adique de k; à /c-isomorphisme près, il n'y a alors qu'un nombre fini
de courbes elliptiques d'invariant j donné, et pour chacune d'elles le groupe
de torsion est fini). C'est un problème ouvert de savoir si la condition sur j
peut être omise (dans le cas k Q, c'est un théorème de Mazur que l'ordre
du groupe de torsion est au plus 16).

3. Surfaces cubiques

C'est la partie de l'œuvre de Châtelet qui a joué un grand rôle dans mes
recherches personnelles.

Sauf mention du contraire, les surfaces cubiques ici considérées sont
supposées absolument irréductibles et non coniques. Le corps de base k est

pris de caractéristique zéro.

3.1. Avant Châtelet.

De 1940 à 1944, Mordell et B. Segre s'intéressent aux surfaces cubiques.
Ils montrent que si une telle surface X définie sur k possède un point
rationnel non singulier, alors il existe une application rationnelle dominante
définie sur k d'un plan projectif sur X. En particulier les points rationnels
sont denses pour la topologie de Zariski. B. Segre montre en 1944 qu'une
surface cubique singulière X qui possède un point rationnel non singulier
est /c-rationnelle (/c-birationnelle au plan projectif) sauf si X possède exactement
deux points singuliers conjugués. En 1951, ce même Segre étudie les surfaces

cubiques non singulières. On dit qu'une telle surface contient un Sn si elle

contient un ensemble globalement défini sur k de n droites gauches deux
à deux. Segre montre que si X est /c-rationnelle, alors X contient
nécessairement un St% un S2, un S3 ou un S6 (comme le montrèrent
indépendamment en 1970 Swinnerton-Dyer et Iskovskih, X contient en fait un

S2, un S3 ou un S6). En 1951, Segre donne aussi les premiers exemples
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de surfaces cubiques X qui possèdent un point rationnel non-singulier mais

qui ne sont pas /c-rationnelles. En 1953, Selmer établit le principe de Hasse

pour les surfaces cubiques diagonales

ax3 + by3 + cz3 + dt3 0 ab/cd e /c*3

En 1955, Skolem établit le principe de Hasse pour les surfaces cubiques

singulières.

3.2. La contribution de Châtelet [1953] [1954a] [1954b] [1958]

[1959b] [1966].

Tout d'abord, Châtelet montra qu'une surface cubique non singulière qui
contient un S3 ou un S6 satisfait le principe de Hasse. Ce résultat généralise
le résultat de Selmer mentionné ci-dessus. La clé de la démonstration est

que si X contient un S6, alors X est /c-birationnelle à une surface de

Severi-Brauer. Les notes de 1953 et 1954 contiennent des équations concrètes

pour des surfaces satisfaisant les dites conditions.
Dans [1954b], Châtelet se demande comment décrire l'ensemble X(k)

des points rationnels d'une surface cubique X lorsque k est un corps de

nombres et que X n'est pas /c-rationnelle, ce qui exclut une représentation
paramétrique essentiellement biunivoque. On pourrait a priori chercher un
nombre fini de paramétrisations multivoques (py.X^X avec X(k)

(Jfcpf(Xf(fc)) et chaque Xt k-birationnel au plan projectif PChâtelet
remarque que cela semble très difficile (en 1967, Manin montrera que
c'est en général impossible). Aussi Châtelet fait-il la suggestion très originale
suivante: chercher de telles paramétrisations, mais avec X{ /c-birationnel à

P£ pour un entier n > 2. Il prend alors comme exemple la surface X
d'équation

NKlk(x+ay + (ù 2z)1

avec K k(cd) extension cubique non cyclique du corps de nombres k. Ici
X(k) K*1 est le groupe des éléments de K* de norme 1. Si L/k est la
clôture galoisienne de K/k, G Gai (L/k) < s, i > avec s3 t2 1,

Châtelet montre que l'application

cp: L* -> K*1

x (s(x)/x) • (t(s(x))/x))

a un conoyau fini. La démonstration utilise des factorisations fort rémi-
niscentes de la démonstration du théorème de Mordell-Weil faible. En
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