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If à SE 1 (mod 4) then < 1, —> is an integral basis of A.

C) Discriminant

Let {oq, a2} be an integral basis. Then

Tr(oci) Tr(a1a2)

Tr^o^) Tr(ai)
D Dk det

is independent of the choice of the integral basis. It is called the discriminant
of K. It is a non-zero integer.

If à ~ 2 or 3 (mod 4) then

Tr (1) Tr(Vrf)\ /2 0
D det det I so D 4d.

VTr(yrf) Tr(rf) / \0 2

If d m. 1 (mod 4) then

Tr (1) T

Tf1+^D det j det/ \ so D d.
1 +\Z^L

Jr A +VL 2I\ 1
:

Every discriminant is D 0 or 1 (mod 4).

In terms of the discriminant,

A j*_±Wi>
a,b g Z a2 Db2 (mod 4)

D) Decomposition of primes

Let K Q(y/d), where d is a square-free integer, let A be the ring of
integers of K.

The ideal P =£ 0 of A is a prime ideal if the residue ring A/P has no
zero-divisors.

If P is a prime ideal there exists a unique prime number p such that
P n Z Zp, or equivalently, P ^ Ap.
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If 7, J are non-zero ideals of A, it is said that 7 divides J when there
exists an ideal 11 of A such that 7 I x J.

The prime ideal P containing the prime number p divides the ideal Ap.
If 7 is a non-zero ideal of A then the residue ring A/1 is finite. The

norm of 7 is N(I) #(A/I).
Properties of the norm :

If 7, J are non-zero ideals, then N(I. J) N(I) N(J).
If 7 divides J then N(I) divides N(J).
If a g A, a =£ 0, then N(Aol) | N(a) | (absolute value of the norm of a). In
particular, if a e Z then N(v4a) a2.

If the prime ideal P divides Ap then N(P) is equal to p or to p2.

Every ideal I ^ 0 is, in unique way, the product of powers of prime
ideals : n

If /, J are non-zero ideals, if / 3 J then I divides J.

Every ideal 7/0 may be generated by two elements, of which one may
be chosen in Z; if I n Z Zn then I An + Aol for some öle A. In this

case, the following notation is used : I (n, a).

Consider now the special case where p is a prime number. Then Ap
is of one of the following types :

iAp
P2, where P is a prime ideal: p is ramified in K.

Ap P, where P is a prime ideal : p is inert in K.

Ap P1P2, where P1,P2 are distinct prime ideals: p is decomposed or

Note also that iï Ap I.J, where 7, J are any ideals (different from A),

not necessarily distinct, then 7, J must in fact be prime ideals.

I shall now indicate when a prime number p is ramified, inert or
decomposed, and also give generators of the prime ideals of A. There are

two cases : p / 2, p 2.

/ » n p?
i i

splits in K.

Denote by the Legendre symbol, so

0 when p divides d

— 1 when d is not a square modulo p

+ 1 when d is a square modulo p
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Let p 2.

1) If p divides à then Ap — (p, a/^)2.

2) If p does not divide d and there does not exist aeZ such that

d a2 (mod p) then Ap is a prime ideal.

3) If p does not divide à and there exists a e Z such that d a2 (mod p)

then Ap (p, a + yfd) (p, a — y/à)-

Hence

1) p is ramified if and only if J 0.

fd\
2) p is inert if and only if - — 1.

\Pj
(d\

3) p is decomposed if and only if - +1.
\Pj

Proof. The proof is divided into several parts.

fd\
a) If - — 1 then Ap is a prime ideal.

\pJ
Otherwise Ap P P' or P2, with P n Z Zp. Let a g A be such that

P (p, oc) 2 Aql so P I Avl, hence p divides N(P), which divides N(Ao)

I N(a) I. If p I a then — e A and P Ap 1, — Ap, which is absurd.
p V pj

So p X a. Then,

d 2 or 3 (mod 4) I a a + with a,b e Z
=> /

^ 1 (mod 4) a
a + by/d

^ a,be Z, a b (mod 2)

iV(a) a2 — db2

=^> p divides a2 — dfr2

_
a2 - db2

N(a)

hence a2 db2 (mod p) and so pfb (otherwise p | a, hence p | a, which
is absurd).

Let b' be such that bb' m 1 (mod p), so (ab')2 d (mod p), therefore either
fd\

p I d or - +1, which is a contradiction.
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b) If 0 then Ap — (p, -v/ïï)2.

Indeed, let P (p, yfd), so P2 (p2, p^/d, d) Ap ^p, since

- g Z. But d is square-free, so gcd p, - j *= 1, hence P2 ^4p and this
P \Pj
implies that P is a prime ideal.

c) If — 1 then v4p — (p, a A yfd) (p, a —yfd), where 1 ^ a < p — 1

and a2 d (mod p).

Indeed,

(p, a + ^/d) (p, a — fd) (p2, pa + pfd, pa — p-N/d, a2 — d)

^4p ^p, a + -v/d, a — ^/d, ^ Ap ^p, a -f <N/d, a — -N/d, 2a, ^4p,

because gcd(p, 2a) 1. If one of the ideals (p, a + yfd), (p, a —yfd) is equal
to A, so is the other which is not possible.

So (p, a + fd), (p, a — fd) are prime ideals. They are distinct : if (p, a + fd)
(p, a — fd) then they are equal to their sum

(p, a + fd, a — fd) (p, a + a — 2a) A

which is an absurd.

Finally, these three cases are exclusive and exhaustive, so the converse
assertions are also true.

Note. If d 1 (mod 4) and d a2 (mod p) then

(p,a + y/d) (p,l(a-l) + co),

1 + Jd
where co —^— and 21 1 (mod p). Hence, if - / — 1 there exists

2 w
beZ,0^b^p — 1, such that p divides 7V(h + co) and moreover if b p — 1

then 1 (mod p).

Indeed, a + yfd a — 1 + 2a>. If 2/ 1 (mod p) then

(p, a + yfd) (p, (a— 1) + 2cö) (p, l(a— l) + co).

(d\If 1 — 1 / — 1 then there exists a prime ideal P dividing Ap, where
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P (p,a +^d),01

So P p,b+ a>) with 0 < b < p—1, b1) (mod p).

Since P 3 A(b+ coj then p divides N(P), which divides N(b + a>). Finally,

if pdivides JV(p— l + <o) ^(2P~2+^) (2P~4 ~~ then P divideS

so d 1 (mod p).
4

Let p 2.

If d 2 (mod 4) then A2 (2, y^)2-

If d 3 (mod 4) then A2 (2, 1 + jd)2.
If à a 1 (mod 8) then H2 (2, co) (2, co').

If d 5 (mod 8) then H2 is a prime ideal.

Hence

1) 2 is ramified if and only if à 2 or 3 (mod 4).

2) 2 is inert if and only if d 5 (mod 8).

3) 2 is decomposed if and only if d 1 (mod 8).

Proof. The proof is divided into several parts,

a) If d 5 (mod 8) then H2 is a prime ideal.

Otherwise, A2 P P' or P2, with P n Z Z2. Then there exists

a g Al such that P (2, a) ^ Ha, so P divides Ha and 2 divides iV(P),

which divides N{a).

If 2 I a then P H2 ^/, ^ H2, which is absurd. Thus

2 f OL

a + with a b (mod 2), so N(ol)

From 2 | N(a) then 8 divides a2 — db2 a2 — 5b2 a2 + 3h2 (mod 8).

If a, b are odd then a2 b2 1 (mod 8), so a2 + 3b2 4 (mod 8),

which is absurd. So a, b are even, a 2a', b 2b', and a a' +
2 divides iV(a) a'2 — db'2.

Since d is odd, then a', b' are both even or both odd.

If a', b' are even then 2 divides a, which is absurd.

If a', b' are odd then a a' + (multiple of 2) + 1 + yfd
(multiple of 2) + 2co (multiple of 2), which is absurd.

b) If d a 1 (mod 8) then H2 (2, co) (2, co').
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Indeed,

(2, cd) (2, co') ^4, 2co, 2cd7, -42 ^2, co, cd7, -y-j -42

because cd + co7 1.

Also (2, cd) # (2, cd7), otherwise these ideals are equal to their sum
(2, cd, cd7) A, because cd + cd7 1.

c) If d 2 or 3 (mod 4) then v42 (2, -v/d)2, respectively (2, l-b-y/^)2.
First let d 4e + 2 then

(2, y^)2 (4, 2,/d, d) ^42(2, yd, 1)

so (2, yd) is a prime ideal.

Now, let d 4e + 3, then

(2, 1 + yfd)2 (4, 2 + 2yJ~d, 1 + + 2yJrd) — (4, 2 + 2yj^d, 4(e + 1) + 2yJ~ct)

A2(2, 1 + -y7^, 2(e + 1) + y/d) A2(2, 2e + 1, 1 + ^y^, 2(e + 1) + y/d) A2

and so (2, 1 + yfd) is a prime ideal.

Finally, these three cases are exclusive and exhaustive, so the converse
assertions also hold.

E) Units

The element a e A is a unit if there exists ß e A such that aß 1.

The set U of units is a group under multiplication. Here is a description
of the group of units in the various cases. First let d < 0.

Let à / — 1, — 3. Then U {+ 1}.

Let d — 1. Then U {+ 1, + i}, with i f— 1.

Let d — 3. Then U {± 1, ± p, ± p2}, with p3 1, p ^ 1, i.e.

_ -1 + y^3

Let d > 0. Then the group of units is the product U {+l}xC,
where C is a multiplicative cyclic group. Thus C {s" | n e Z}, where s is

the smallest unit such that a > 1. s is called the fundamental unit.
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