Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 34 (1988)

Heft: 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: LES GRANDS THÈMES DE FRANÇOIS CHÂTELET

Autor: Colliot-Thélène, Jean-Louis

Kapitel: 1.3. Après les travaux de Châtelet. **DOI:** https://doi.org/10.5169/seals-56605

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 01.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

trique les transformations qui permettent de passer d'une quadrique nonsingulière X de \mathbf{P}^3 à une conique de \mathbf{P}^2 définie sur l'extension discriminant et ainsi en particulier d'obtenir le principe de Hasse pour ces quadriques.

1.3. Après les travaux de Châtelet.

En 1949, B. Segre tout en rendant hommage au travail de Châtelet rappelle l'existence du travail de Severi (1932) qui avait échappé à l'attention de Châtelet, et indique en particulier que Severi par ses méthodes avait obtenu $(d+1)^d$ au point 2) du théorème ci-dessus. C'est dans cet article que Segre transforme les « variétés de Brauer » de Châtelet en « variétés de Severi-Brauer ». Convenons qu'il eut été plus juste de les appeler variétés de Severi-Châtelet.

Alors que la théorie de Châtelet insiste de façon très moderne sur l'isomorphie sans exceptions, Amitsur en 1955 refait la théorie d'un point de vue plus birationnel (corps de décomposition « générique » d'une algèbre centrale simple) et redémontre l'énoncé 2) du théorème ci-dessus. Il établit le résultat intéressant suivant: si X et Y sont deux k-variétés de Severi-Brauer k-birationnellement équivalentes, les classes a(X) et a(Y) qui leurs sont associées dans le groupe de Brauer de k engendrent le même sous-groupe. On ignore si la réciproque vaut. Le point de vue de l'ensemble de cohomologie $H^1(\operatorname{Gal}(K/k), PGL_{d+1}(K))$ réapparaît dans un article de Roquette (1963). Signalons aussi un article d'Amitsur (1981).

Le point de vue moderne sur les variétés de Severi-Brauer qui a été esquissé plus haut fut dégagé par Serre dans ses livres *Corps locaux* (1962) et *Cohomologie galoisienne* (1965). Après l'introduction des algèbres d'Azumaya, qui généralisent les algèbres simples centrales, le corps de base étant remplacé par un anneau commutatif (Azumaya 1951, Auslander/Goldman 1960), Grothendieck (1965) dans une série magistrale d'exposés sur le groupe de Brauer d'un schéma étudie les schémas de Severi-Brauer relatifs.

1.4. Importance des variétés de Severi-Brauer.

En arithmétique, les variétés de Severi-Brauer servent de référence dans l'étude des variétés rationnelles plus générales (une variété X est dite rationnelle si elle devient birationnellement équivalente (mais non nécessairement isomorphe) à l'espace projectif sur une extension finie de son corps de base.) Pour d > 1, aucune des propriétés du théorème ci-dessus ne vaut en général, mais on peut essayer de trouver des substituts. Nous reviendrons là-dessus au paragraphe 3.