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(2) => (3) : trivial.

(3) => (1): By (3) we have in(0g <in(F)> for every QeJ - {0}. Hence

<in(J)> <in(F)>.

2.6. Corollary. Let F be a Gröbner basis of an ideal J ^ R[2Q.

1) F generates J.

2) Let Q g R[Xf Then QeJ iff a rest of Q after dividing by F
is zero.

Proof Obvious.

2.7. Another caracterisation of Gröbner bases can be given as follows:

We shall say that a set {La | a g @(F)} of admissible combinations of F
(with pairwise different degrees) is an "inadmissible set", if for all a we have

deg (LJ a and le (La) generates the ideal

R<lc(P) I P e <in(F)>, deg(P) a>

Any F-admissible set is R-linearly independent.
If R is a field the condition on lc (La) is superfluous.

Proposition. Let J be an ideal in R[X] containing F. Then the

following conditions are equivalent :

(1) F is a Gröbner basis of J.

(2) There is an F-admissible set which is a R-basis of J.

(3) Every F-admissible set is a R-basis of J.

Proof Let {La | a g @(F)} be a F-admissible set.

(1) (3): Let Q be an element of J - {0}. Division of Q by {Ldeg(ô)},
of its rest Q by {Ldeg(Q)}>... yields in a finite number of steps an expression
of Q as R-linear combination of La's.

(3) => (2) : trivial.

(2) => (1) : Suppose that {La | a e @(F)} is a R-basis of J. For every
Q g J - {0} the initial term of Ldeg(Q) divides in(g), hence in(Q) g <in(JP)>.

3. Construction of Gröbner Bases

3.1. Definition. Let P, Q be elements of R[X], let a, ß g N" and let a,beR.
Then the polynomial



224 F. PAUER AND M. PFEIFHOFER

S(P, ß) : aX«P - bX*Q
is called a "S(ubtraction)-polynomial of P, ß" iff

a + deg(P) ß + deg (Q)min (^({P})n^({ß}))
and le (P) • a le (ß) • b a least common multiple of le (P) and le (ß).

3.2. Example. Consider the graded lexicographic ordering on N2 and

P: 6X\X2 + 1, ß: 8X^X1 + 3XiX2 + X2eZ[X1?X2]

Then

4X2P -3X1ß - 9X?X2 - 3X?X2 + 4X2 and - 4X2P + 3X?ß

are ^-polynomials of P, ß.
See figure 5.

8

6

Figure 5.

3.3 Remark. For P, Q e P[X], S(P, Q) as defined above is unique up to
multiplication by an invertible element of R. Therefore we shall call it
"the" S-polynomial of P, ß.

3.4. Lemma. Let P1,..., Pk e P[X], cx,..., e P such that deg (Pi)

deg (Pk) - : 5 hut deg J] CfPj) ^ 5.
£ 1

k

Then £ cfPt z's a R-linear combination of the S-polynomials S(Pi9Pj),
i 1

1 < i,j ^ k.

Proof. By induction on k.
k

Let lt: le (Pf), 1 < i < k. Then £ cf 0.
£ 1
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It is sufficient to prove the existence of atj, hl7 e R such that

Z ctPi Z (lijPi-bijPj)andbylj, 1 < <
i=l l^ij^k

For k 2 we have c1P1 + c2P2 c1P1 — — c2)P2 and c1l1 —c2)/2.

k 3: Let / be a greatest common divisor of /i, /2, /3. Since c2/2 — cJi
— c3/3, a greatest common divisor of and /3 divides c2/. Hence there are
elements x2,x3e R such that c2l xjt + x3/3.

Then d1: { — x1l2 — c1l)/l, d2: — xJJ/l, d3: (x3l2)/l are elements

of R. Furthermore, we have

(c1 -{-d^! d2l2

(c2 + d2)l2 — d3l3

(c3 + d3)l3 djx and

Z ciPtL(c1+d^P1-d2P2-] + [(c2 + d2)P2-d3P3]
i 1

+ [(c3 + d3)P3 — d1P1]

Jc k
k > 3 : Let Q : £ and m : Z cih

i 3 i 3

If m 0, we can apply the induction hypothesis to g.

If m 7^ 0, by the k 3 case there are d2, d3 e R such that

+ c2P2 + g l(c1+d1)P1—d2P2] + [(c2 + d2)P2 — d3Q]

+ Kl+^ß-di^i]
and + d2/2 (c2 + d2)l2 d3m, (l + d3)m d1l1

Therefore, we can apply the induction hypothesis to (c2 + d2)P2 - £ d^P;
i 3

k

and to — dxP 1 (1 + d^Pi and thus terminate the proof.
t 3

Remark. If Ä is a field, the proof is trivial: Let /, : lc(Pt) and

: (Pi/h), 1 < i < K then £ c;P; c^fP'i-P'2)
i= 1

+ (ci/i+ c2/2) (P2 —P3) + •« + (£ Cili) (P,k_1 — P'k),
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3.5. Theorem. Let J be an ideal of P[X] generated by a finite subset

F ç P[X] - {0}.

Then the following assertions are equivalent :

(1) F is a Gröbner basis of J.

(2) For all P, Qe F a rest of S(P, Q) after division by F is zero.

Proof

(1) => (2) : Let P, Qe F. Then S(P, Q) and its rest after division by F are
elements of J. Therefore, this implication is a special case of proposition 2.5.,

(1) => (2).

(2)=>(1): Let A e J — {0}. We have to show that in(A)e<in(F)>.
Since J is generated by F, there are elements c(y, P) e R such that
A £ c(y,P)X'P.

PeF, yeN"

Let 5 : max {y + deg (P) | c(y, P) ^ 0} and L : Y c(y, P)XyP.
y ,p

J, deg(P) 5

By lemma 1.3. we may assume that 5 is minimal, i.e. :

if A Y, P)XyP then 5 ^ max {y + deg (P) | d(y, P) ^ 0}.
PF, yeN"

Suppose that deg (L) < 5. Then the lemma above yields

L Y p> Q)X*S(P> Q) > <<*> P,Q)zR
P, QeF, aeNn

(note that for ß, y e N" there is an a g N" such that S(X*P, XyQ) X*S(P, Q)).

But according to (2) the S-polynomials are admissible combinations of F
and clearly the same holds for the XaS(P, ©'s. Since their degree is smaller

than 8, this is a contradiction to the minimality of 8. Hence deg(L) 8.

But then in (^4) in(L) g <in (P)>.

3.6. Theorem. Let J be the ideal generated by F. Then a Gröbner

basis of J can be constructed (in a finite number of steps) by the following
algorithm :

F0' F

Fi + 1: Ft kj ({S(P, Q) I P, Q e Pj - {0})

(S(P, Q) is a rest of S(P, Q) after division by Ft). If Ft Fi + 1, then

Fi is a Gröbner basis of J.
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Proof. By the preceding theorem we only have to show that there is a

k e N such that Fk Fk+1.

If Fi c= Fi+1 then <in(Fi)> c= <m(Fi+1)>. Since the strictly ascending

sequence <in (F0)> c= <in(F1)> c= must be finite, there is a k e N with
Fk Fk+1.

3.7. Example. Consider the graded lexicographic ordering on N2 and

F: {P,: 2X^1 -X1,P2: 3XfX2 - X2} s Z[XlyX2].
Then

F0 F and S(Pl9P2) 3X1P1 - 1X2P2 - 3Xl + 2X\

S(P1,P2) :P3.

So

F!{P1,P2,P3} and S(pltpy* 0,

SiP^)^ 4X42~ 3Xl :P4, S(P2,P3)Fl -X2=
Therefore F2 {P1,P2,P3,P4,P5}andall rests after division by F2 of
S-polynomials are 0. Hence F2 is a Gröbner basis of the ideal generated by

See figure 6.

-J

Figure 6.
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3.8. Remark. Let G be a Gröbner basis of an ideal J. We shall say that G

is "simplified" if all P e G fulfill the following two conditions :

le(P) generates the ideal R<lc(Q) \ Qe J, deg(g) deg(P)>

and

in(P) $ <in(G—{P})>

It is easy to see that the elements of a simplified Gröbner basis have

pairwise different degrees.

If R is a field then G is simplified iff the elements of G have pairwise
different degrees and deg(G) is the set of minimal elements (with respect
to the natural partial ordering on N") in deg (J).

If G is not simplified, then in the following way we can construct
(in a finite number of steps) a simplified Gröbner basis of J :

For every P e G choose an admissible combination P' of G such that
deg (P) deg (P') and le (P') generates the ideal

*<lc(ß)l ße J, deg(ß) deg (P)>

Then G' : (Pr | P g G} is a Gröbner basis of J, since <in (J)> <in (G)>
S <in(G')> £ <in(J)>.

If there is a P' e G' with in(P')e <in(G' —{P'})>, then G' — {P'} is a

Gröbner basis, since then < in (G' —{P'})> <in(G')> <in(J)>.
Replace G' by G' — {P'}. After finitely many eliminations of this kind we

obtain a simplified Gröbner basis.

In example 3.7. the Gröbner basis P2 is not simplified, since in(P2)
— A2in(P3) and in (P4) 1X2 in (P5). {Pl5P3,P5} is a simplified

Gröbner basis of the ideal generated by P2.

4. Application to Systems of Algebraic Equations

Let J be an ideal in P[X], generated by a subset F / {0}.

4.1. We may consider F as a system of algebraic equations in n variables.

We denote by K an algebraic closure of the quotient field of R.

Let Z(F) (resp. ZK(F)) be the set {z e Rn (resp. Kn) | P(z) 0 for all P e F)
of common zeros in Rn (resp. Kn) of the elements of P. Clearly Z(P) Z(J)
and Zk(F) ZK(J).
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