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(2) = (3): trivial
(3) = (1): By (3) we have in(Q) e <in(F)> for every Q € J — {0}. Hence
<in(J)> = <in(F)>.
2.6, COROLLARY. Let F be a Grobner basis of an ideal J < R[X].
1) F generates J.
2) Let QeR[X]. Then QeJ iff arest of Q after dividing by F

IS zero.

Proof. Obvious.

2.7. Another caracterisation of GrOobner bases can be given as follows:

We shall say that a set {L,|a e Z(F)} of admissible combinations of F
(with pairwise different degrees) is an “F-admissible set”, if for all o we have
deg(L,) = o and lc(L,) generates the ideal

r<lc(P)| Pe <in(F)>,deg(P) = a> .

Any F-admissible set is R-linearly independent.
If R is a field the condition on lIc(L,) is superfluous.

PROPOSITION. Let J be an ideal in R[X] containing F. Then the
following conditions are equivalent :

(1) F is a Grébner basis of J.
(2) There is an F-admissible set which is a R-basis of J.
(3) Every F-admissible set is a R-basis of J.

Proof. Let {L,| o€ 2(F)} be a F-admissible set.

(1)=(3): Let Q be an element of J — {0}. Division of Q by {Lgego}»
of its rest Q by {Lgegq)}, - yields in a finite number of steps an expression
of Q as R-linear combination of L’s.

(3) = (2): trivial.

(2) = (1): Suppose that {L,|oe€P(F)} is a R-basis of J. For every
Qe J — {0} the initial term of L.y, divides in (Q), hence in (Q) € <in (F)>.

3. CONSTRUCTION OF GROBNER BASES

3.1.  Definition. Let P, Q be elements of R[X],let o, B € N" and let a, b € R.
Then the polynomial
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S(P, Q): = aX*P — bX*Q
is called a “S(ubtraction)-polynomial of P, Q” iff
o + deg(P) = B + deg(Q) = min(2({P})n2({Q}))
and Ic(P)-a = 1c(Q)+-b = a least common multiple of Ic(P) and Ic(Q).

3.2. Example. Consider the graded lexicographic ordering on N? and

P::6X:]5_X2+1, Q:ZSXIX%+3X1X2+X2€Z[X1,X2:|.

Then

4X,P — 3X3Q = — 9X3X, —3X3X, +4X, and — 4X,P + 3X3?Q
are S-polynomials of P, Q.

See figure 5.
8
+
s
FIGURE 5.

3.3 Remark. For P,Q e R[X], S(P, Q) as defined above is unique up to
multiplication by an invertible element of R. Therefore we shall call it
“the” S-polynomial of P, Q. :

34. LemMmA. Let Py,.., P e R[X], Ci, s C € R such that deg(P,) = ..
k .

= deg(P,) =:8 but deg(),c;P;) # 8.
i=1

k
Then ), ¢;P; is a R-linear combination of the S-polynomials S(P;, P;),
i=1
1 <i,j<k

Proof. By induction on k.
k

Let [;: =1c(P;),1 < i < k.- Then ) ¢l; = 0.

i=1
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It is sufficient to prove the existence of a;;, b;; € R such that

jo

it
1<i, i<k

k
'Zl ¢P;= ) (a;Pi—b;P;) and ayl, = byl;, 1<ij<n.

For k = 2 we have ¢,P, + ¢,P, = ¢, P; — (—c¢,)P, and c;l; = (—cy)l;.
k = 3: Let | be a greatest common divisor of /,, [,, l5. Since c,l, = — ¢;l;
— ¢3l5, a greatest common divisor of I, and [ divides c,l. Hence there are
elements x,, x5 € R such that ¢,/ = x;l; + x3l5.

Then di: = (—x{,—cl)/l, dy: = (—x41y)/l, d5: = (x3l,)/| are elements
of R. Furthermore, we have
(ci+d)l; = dyl,
(cra+dy)l, = dsl;y
(C3+d3)l3 == dlll and

3
__21 ¢;P; = [(c;+d)Py—d,P,] + [(c;+d,)Py—dsP5]

+ [(c3+d35)P3—d P,].
k k
k>3:LetQ:= ) ¢;P;, and m:= Y ci.
i=3 i=3
If m = 0, we can apply the induction hypothesis to Q.
It m # 0, by the k = 3 case there are d, , d,, d5 € R such that
ciPy + Py + Q = [(c; +d)Py—d,P,] + [(c; +d3)P,—d; Q]
+ [(1+d5)Q—d, P,]
and (Cl+d1)ll = dzlz, (Cz+d2)lz = d3m, (1+d3)m - dlll .

k
Therefore, we can apply the induction hypothesis to (c2+dy)P, — D dac;P;
i=3

k
and to — d;P; + ) (14d;)c;P; and thus terminate the proof.
i=3

Remark. If R is a field, the proof is trivial: Let l;:=1c(P;) and
k
Pir=(Py/l;),1 <i<k then Y ¢P, = c (P —P%)

i=1

k-1
+ (eili+coly) (PY—PY) + .. + (Z ¢il;) (Pr—1—Py).
i=1
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3.5. THEOREM. Let J be an ideal of R[X] generated by a finite subset
F < R[X] — {0}.

Then the following assertions are equivalent :
(1) F is a Grébner basis of J.
(2) Forall P,QeF arest of S(P,Q) after division by F is zero.

Proof.

(1) =(2): Let P,QeF. Then S(P, Q) and its rest after division by F are
elements of J. Therefore, this implication is a special case of proposition 2.5.,
1) = @)

(2)=(1): Let AeJ — {0}. We have to show that in(A)e <in(F)>.
Since J i1s generated by F, there are elements c(y, P)e R such that

A= Y cy, P)X'P.
PeF,yeN"
Let : = max {y + deg(P)|c(y,P) # 0yand L: = >  c(y, P)X"P.
YyP
Y, deg(P) =25

By lemma 1.3. we may assume that ¢ is minimal, i.e.:
ifA= > d(y, P)X"P then § < max {y + deg(P)|d(y, P) # 0}.

PeF,yeN"
Suppose that deg (L) < 8. Then the lemma above yields
L= Y a(P QX*S(P,Q), aloP,Q)eR

P, QeF,acN"

(note that for B, y € N" there is an o € N" such that S(XPP, X"Q) = X“S(P, Q)).

But according to (2) the S-polynomials are admissible combinations of F
and clearly the same holds for the X*S(P, Q)’s. Since their degree is smaller
than 9§, this is a contradiction to the minimality of 6. Hence deg(L) = o.
But then in (4) = in(L) € <in(F)>.

3.6. THEOREM. Let J be the ideal generated by F. Then a Grobner
basis of J can be constructed (in a finite number of steps) by the following
algorithm :

Fo:=F
Firp:=F,0({S(P, Q)| P,QeFi} — {0})

(S(P, Q) is a rest of S(P, Q) after division by F;). If F, = F;,,, then
F; is a Grobner basis of J.

4
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Proof. By the preceding theorem we only have to show that there is a
k € N such that F,, = F,,,.

If F; ¢ F;, then <in(F;)> < <in(F;,{)>. Since the strictly ascending
sequence <in(F,)> < <in(F,)> < .. must be finite, there is a k € N with
Fr = Fiyy.

3.7. Example. Consider the graded lexicographic ordering on N? and
F:={P,:=2X,X}—-X,,P,: =3X3X, — X,} < Z[X,, X,] .
Then
Fo=F and S(P,,P,) = 3X,P, — 2X,P, = — 3X? + 2X?2
= S(Py, P;) = : P;.
So

Fy ={P;,P,,P3} and S(P;,P,)" =0,
S(PI,P3)F1:4X‘21—3X%::P4, S(Pz,P3)F1 = 2X2_X2=:P5.

Therefore F, = {P;, P,, P5, P,, Ps} and all rests after division by F, of
S-polynomials are 0. Hence F, is a Grobner basis of the ideal generated by F.
See figure 6.

-3

FIGURE 6.
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3.8. Remark. Let G be a Grobner basis of an ideal J. We shall say that G
is “simplified” if all P € G fulfill the following two conditions:

Ic (P) generates the ideal x<Ic(Q)| Q € J, deg(Q) = deg(P)>
and
in(P) ¢ <in(G—{P})> .

It is easy to see that the elements of a simplified Grobner basis have
pairwise different degrees.

If R is a field then G is simplified iff the elements of G have pairwise
different degrees and deg(G) is the set of minimal elements (with respect
to the natural partial ordering on N”) in deg (J).

If G is not simplified, then in the following way we can construct
(in a finite number of steps) a simplified Grobner basis of J:

For every P € G choose an admissible combination P’ of G such that
deg (P) = deg(P’) and lc (P’') generates the ideal

r<Ic(Q)| Qe J,deg(Q) = deg(P)> .

Then G': = {P’| P € G} is a Grobner basis of J, since <in(J)> = <in(G)>
c <in(G)> < <in(J)>.
If there is a P' € G' with in(P') e <in(G'—{P'})>, then G' — {P'} is a
Grobner basis, since then <in(G'—{P'})> = <in(G)> = <in(J)>.
Replace G' by G' — {P'}. After finitely many eliminations of this kind we
obtain a simplified Grobner basis.

In example 3.7. the Grobner basis F, is not simplified, since in(P,)
Grobner basis of the ideal generated by F,.

4. APPLICATION TO SYSTEMS OF ALGEBRAIC EQUATIONS
Let J be an ideal in R[ X7, generated by a subset F # {0}.

4.1. We may consider F as a system of algebraic equations in n variables.
We denote by K an algebraic closure of the quotient field of R.

Let Z(F) (resp. Zg(F)) be the set {z € R" (resp. K") | P(z) = O for all P € F}
of common zeros in R" (resp. K") of the elements of F. Clearly Z(F) = Z(J)
and Zy(F) = Zg(J).
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