Zeitschrift: L'Enseignement Mathématique
Herausgeber: Commission Internationale de I'Enseignement Mathématique

Band: 34 (1988)

Heft: 1-2: L'ENSEIGNEMENT MATHEMATIQUE

Artikel: REPRE§ENTATIONS ET TRACES DES ALGEBRES DE HECKE
POLYNOME DE JONES-CONWAY

Autor: Vogel, Pierre

Kapitel: 86. Une généralisation du polynéme de Jones-Conway

DOI: https://doi.org/10.5169/seals-56602

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 28.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-56602
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

POLYNOME DE JONES-CONWAY 349

la classe commune des ¢; et P est un polyndme de k[c] = Z[e, B, B~ cl.
Il en résulte que la classe de t,(tr) modulo J est représentée par cP’, P’
désignant la classe de P dans anneau A = k[c]/y+p-q . D’aprés les théo-
rémes d’Alexander et Markov, le polynéme P’ ne dépend que de 'entrelacs T.
On a ainsi associé & tout entrelacs orienté E un polyndéme Pp = P’ de
Panneau A. Cet anneau est en fait le sous-anneau de k[o, o™ 1, B, B 1]
engendré par o, B, B~ et (1+ B L.

Si x est un croisement d’un entrelacs E dessiné dans le plan, la méthode
d’Alexander permet de modifier le dessin de E sans changer le croisement x
de facon a obtenir un entrelacs E’' isotope a E et de la forme T, ou «t
est une tresse de B,. Il en résulte que les trois entrelacs E,, E_ et E,
obtenus par modification de E au voisinage de x sont isotopes a des
entrelacs de la forme 7., T_ et T, ot 'on a

—1_n 11

. =701, 1. =701, 1,=11.

On a alors dans I'algebre H, I’égalité suivante:
T, —aTg + Pt =0,
ce qui implique

PE —CXPEO+BPE_=O

+

Si E est le nceud trivial il est de la forme Il et la classe de 1, dans
le quotient de A par I, est égal 4 ¢. On a donc

PE:1

et le théoréme 1-7 est alors clair.

§ 6. UNE GENERALISATION DU POLYNOME DE JONES-CONWAY

Soit n > 0 un entier. Soit L une sous-variété différentiable compacte
orientée de dimension 1 de I’espace usuel R? entiérement contenue dans la
bande [0, 1] x R* On suppose que le bord de L est standard. C’est-a-dire
quil est formé des 2n points de coordonnées (i,j,0) avec i = 0, 1 et j
variant de 1 4 n. On suppose de plus qu'en chacun de ces points, le
vecteur tangent a L est vertical descendant, c’est-a-dire a projection nulle

sur le plan horizontal 0 x R? et 4 projection negative sur Paxe vertical
R x 0.
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Définition. Une telle variété L sera appelée semi-tresse a n brins. Deux
semi-tresses a n brins seront dites isotopes s’il existe une isotopie de la bande
[0, 1] x R? fixe sur le bord qui envoie 'une sur I'autre.

Sotent L et L' deux semi-tresses & n brins. En recollant les deux bandes
I'une au-dessus de I'autre (celle contenant L étant au-dessus), on obtient une
nouvelle semi-tresse. Cette semi-tresse sera appelée produit de L par L’ et
notée LL'.

PROPOSITION 6-1. L’ensemble des classes d’isotopie de semi-tresses d
n brins est un monoide unitaire pour le produit. Ce monoide contient le
groupe des tresses B, comme sous-monoide. Il sera noté B,.

~

Remarque. Contrairement au groupe B,, le monoide B, est trés gros,
méme pour n petit. Ainsi B, est isomorphe au monoide des classes d’isotopie
d’entrelacs orientés, la loi de composition étant la somme disjointe.

Exemple de semi-tresse a 2 brins: [-:I j ’

Comme précédemment, on posera

A = k[c]/l-i-(}—ac = Z[a, B: B——la c]/l—i—B—aC'

THEOREME 6-2. Il existe pour tout n > 0 une unique représentation p
du monoide 1§,, dans lalgebre de Hecke H, ® A, possédant les propriétés
k
suivantes :
— p étend la représentation canonique de B, dans H,,

— si L,,L_ et L, sont trois semi-tresses d n brins obtenues a
partir d’'une semi-tresse par modifications au voisinage d’un croisement (avec
les mémes notations que dans le cas des entrelacs), on a

p(L;) + Bp(L-) — ap(Ly) = 0.
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Démonstration. Elle occupera tout le reste du paragraphe.
i) Construction de p.

Soit K le corps de fraction de A4. Soit € I'application canonique de H,
dans A, composée de la trace de H, dans A et de I'application quotient
de A dans A qui envoie chaque classe c; en c.

LEMME 6-3. L’application qui & u et v de H, associe &uv) induit une
forme bilinéaire symétrique non dégénérée sur le K-espace vectoriel H, ® K.

Démonstration. Posons, pour tout u et v de H,, <u,v> I¢lément
guv) de A. Il est clair que le produit scalaire < , > est symétrique. Si
I'on quotiente k, A, H, et A par les relations

«a=0, Pp=-1,

k devient Z, A devient anneau Z[c,, c,, ..], A devient Z[c] et H, devient
Z[S,]. Si o est une permutation de S,, sa classe dans A est le monome
ckreB2 | ou p; représente le nombre d’orbites de o a i ¢lements. En effet,
si o est un cycle d’ordre n, il est conjugué a la permutation 6,6, .. 6,_;
et sa classe dans A est ¢,. Si o est formé de cycles d’ordres g;, ¢ est
conjugué a une permutation T,T,.. ou les T; sont des cycles d’ordres g;
et sa classe est le produit des classes c,,.

Il en résulte que la classe de o dans Z[c] est égale a ¢™, m étant le
nombre d’orbites de o. Et le produit scalaire <o, t> de deux permutations
de &S, est égal a ¢™, m étant le nombre d’orbites de ot. Soit A le déter-
minant de ce produit scalaire calculé¢ dans la base &, de Z[S,]. On a

A= R U,

le produit portant sur toutes les permutations de S, et la somme sur toutes
les bijections de &, dans lui-méme. Le symbole [ f] désigne la signature de f
et m(t) désigne le nombre d’orbites de 7.

Comme m(t) est majoré par n, quelle que soit la permutation 1, le degré
de A est majoré par nn!. D’autre part, le coefficient de ¢™ dans A est
la somme des nombres [f], f parcourant I'ensemble des bijections de S,
dans lui-méme telles que of(c) ait n orbites quel que soit o, cest-a-dire
telles que o f(o) soit I'identité quel que soit o. Cet ensemble de bijections
est donc réduit a un élément et le coefficient de c""! dans A est non nul.
Il en résulte que A est non nul. Or A est la classe du déterminant de
la forme bilinéaire symétrique < , > dans le quotient Z[c¢] de A. On
en déduit que le produit scalaire < , > est non dégénéré dans K.
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Soit L une semi-tresse a n brins. Pour toute tresse ¢ de B, on peut
refermer la semi-tresse Lo et 'on obtient un entrelacs orienté E_.. On
notera F(o) le polynome de Jones-Conway de E,.

LeEMME 6-4. L’application F sétend en une application linéaire, toujours
notée F, de lalgebre H, dans l'anneau A.

Démonstration. On étend linéairement F a 1’algébre de groupe k[B,].
Soient o et t deux tresses et i < n un entier. D’aprés les propriétés du
polyndme de Jones-Conway, on a

F(co?t) — aF(co;t) + BF(ot) = 0

et I se factorise a travers l’algebre H,,.
Comme le produit scalaire < , > est non dégénéré sur K, il existe un
unique ¢lément U de I'algébre H, ® K tel que
Yue H,, cFu) = <U,u>

et U ne dépend que de la classe d’isotopie de la semi-tresse L; U sera
note p(L).

i1) Propriétés de p.

LEMME 6-5. Si L est une tresse T, p(t) est égal a la classe de <t
dans H '

n-

Démonstration. Soit o une tresse. En refermant la tresse to on obtient
Pentrelacs E;. On en deduit que la classe &(tc) dans A4 est égale 4 cPy_ et
I'on a

cF(o) = <1,0> .
Comme ceci a lieu pour toute tresse ¢ et donc pour tout élément de

H,, p(1) est égal a la classe de t dans H,,.

LEMME 6-6. Si L est une semi-tresse a n brins et o une tresse de
B,, ona

p(Lo) = p(L)p(o) .

Démonstration. Soit t une tresse de B,. Le produit scalaire < p(Lc), T>
est égal au produit de ¢ par le polyndme de Jones-Conway de I’entrelacs
obtenu en fermant Lot. Il en résulte que <p(Lo), T> est égal a <p(L), ot>
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cest-a-dire 4 <p(L)o, t>. Comme ceci a lieu pour toute tresse T, p(Lo)
est égal a p(L)p(o).

LEMME 6-7. Soient L,,L_ et L, trois semi-tresses obtenues par
modification d’une semi-tresse prés d’un croisement. Le croisement étant de signe
positif pour L, et négatif pour L_ et ayant disparu dans L. Alors on a

p(L+) + Bp(L-) — ap(Lo) = 0.

Démonstration. Soit o une tresse. Alors les trois entrelacs obtenus en
fermant L, o, L_o et L,o sont obtenus d’un entrelacs par modifications au
voisinage d’un croisement. D’aprés les propriétés du polyndome de Jones-
Conway, on a

<p(Li), o> + P<p(L_), o> — a<p(ly), o> =0
et Pon en déduit la formule cherchée.

iii) Unicité de p.

Soit L une semi-tresse représentée par une projection réguliere sur une
bande [0, 1] x R du plan. Notons C,, C,, ..., C, les composantes connexes
de L qui partent de la partie supérieure de la bande en les numérotant
de fagon que les points supérieurs des composantes soient placés de la gauche
vers la droite. On notera E lentrelacs formé des composantes fermées de L.
On dira que L est ascendante si E est en dessous de chaque C; et si,
en parcourant C,; puis C, et ainsi de suite jusqu’a C,, chaque fois que
I'on croise une portion de courbe déja vue, on la croise par dessus. Il
est clair que si L est ascendante, 'union des C; est dénouée et L est
isotope a la somme disjointe d’une tresse et d’un entrelacs. Si L est une

semi-tresse 1l suffit de modifier les positions dessus-dessous de certains
croisements et I'on obtient une semi-tresse ascendante.

LEMME 6-8. Pour toute semi-tresse L a n brins, p(L) appartient a
H, ® A.

~

LEMME 6-9. Soit p" wune application de B, dans H,® A qui
vérifie les propriétés du théoréme 6-1. Alors pour toute semi-tresse L, p'(L)
est égal a p(L).

LEMME 6-10. Soient L et L' deux semi-tresses a n brins. Alors on a

p(LL) = p(L)p(L) .
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Démonstrations. Ces lemmes vont étre démontrés par récurrence sur le
nombre de croisements de L. Supposons donc que les lemmes sont vérifiés
pour toute semi-tresse ayant au plus m — 1 croisements. Soit L une semi-
tresse ayant m croisements. Si 'on modifie un croisement de L (par modifi-
cation dessus-dessous) on obtient une nouvelle semi-tresse L,. Soit L, la
semi-tresse obtenue en supprimant le croisement. D’apres le lemme 6-7, on a

p(L) + Bp(L;) = ap(Lo) ou  Bp(L) + p(Ly) = ap(Lo)

suivant le signe du croisement considéré. Comme L, a m — 1 croisements,
p(Lo) appartient a H, ® A, p'(L,) est égal a p(L,) et p(L,L’) est ¢gal a
p(Lo)p(L). On en déduit que p(L) appartient a H, ® A si et seulement si
p(L,) appartient 2 H, ® A, que p’ et p sont égaux en L si et seulement si
ils sont égaux en L, et que p(LL') est égal a p(L)p(L’) si et seulement si
p(Ly L) est egal a p(Ly)p(L).

Pour montrer les propriétés cherchées on peut supposer, quitte 2 modifier
les croisements non ascendants de L, que L est ascendant. La semi-tresse L
est alors isotope a l'union disjointe d’une tresse T et d’un entrelacs E.

Soit o une tresse. L’entrelacs obtenu en fermant Lo est 'union disjointe
de E et de I'entrelacs obtenu en fermant t. On a donc

<p(L),c> = <1,0> cPy

ce qui implique que p(L) est égal a p(t)cPp et par suite appartient a
H, ® A.

D’autre part, pour tout entrelacs orienté E’, on peut considérer 'image par
p' de T'union disjointe de t et de E. On construit ainsi un invariant
polynomial d’entrelacs qui vérifie les propriétés du polynome de Jones-
Conway, sauf la propriété de valoir 1 sur 'entrelacs trivial. D’aprés I'unicité
du polynéme de Jones-Conway, on a

pP(tUE) = p(t)cPp .

Comme il en est de méme pour p, p et p' prennent la méme valeur en L.
Enfin, on remarque que LL’ est isotope a I'union disjointe de € et de
tL’. On a donc pour toute tresse G

<p(LL), o> = <p(L), ot> cPg,
ce qui implique

p(LL") = p(t)p(L)cPg .
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Comme ceci a lieu quel que soit L', on a

p(L) = p(t)cPg

et 'on a

p(LL) = p(L)p(L)) -

Les lemmes sont alors démontrés, ce qui prouve que p est une représen-
tation de En dans H, ® A qui prolonge la représentation canonique de B,
dans H,, qu'elle vérifie la formule voulue sur les semi-tresses L., L_ et Ly,
et que Cest la seule représentation vérifiant ces proprietés.
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