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la classe commune des ct et P est un polynôme de k\_c] Z[a, ß, ß-1, c\.

Il en résulte que la classe de tn(x) modulo J est représentée par cP\P'
désignant la classe de P dans l'anneau A /c[c]/1 + ß_ac. D'après les

théorèmes d'Alexander et Markov, le polynôme P' ne dépend que de l'entrelacs x.

On a ainsi associé à tout entrelacs orienté E un polynôme PE P' de

l'anneau A. Cet anneau est en fait le sous-anneau de /c[a, a"\ ß, ß~x]
engendré par a, ß, ß_1 et (l + ß)a_1.

Si x est un croisement d'un entrelacs E dessiné dans le plan, la méthode

d'Alexander permet de modifier le dessin de E sans changer le croisement x
de façon à obtenir un entrelacs E' isotope à £ et de la forme x, où t
est une tresse de Bn. Il en résulte que les trois entrelacs E+, E_ et E0

obtenus par modification de E au voisinage de x sont isotopes à des

entrelacs de la forme x +, x_ et x0 où l'on a

T= t'cTjT", T_ x'tffiV', T0 t't"

On a alors dans l'algèbre Hn l'égalité suivante :

x + — otx0 + ßx_ 0,

ce qui implique

PE+ - aPEo + ßP£_ 0

Si E est le nœud trivial il est de la forme 11 et la classe de l1 dans
le quotient de A par I0 est égal à c. On a donc

Pe 1

et le théorème 1-7 est alors clair.

§ 6. Une généralisation du polynôme de Jones-Conway

Soit n > 0 un entier. Soit L une sous-variété differentiable compacte
orientée de dimension 1 de l'espace usuel R3 entièrement contenue dans la
bande [0, 1] x R2. On suppose que le bord de L est standard. C'est-à-dire
qu'il est formé des 2n points de coordonnées (z, j, 0) avec z 0, 1 et j
variant de 1 à n. On suppose de plus qu'en chacun de ces points, le
vecteur tangent à L est vertical descendant, c'est-à-dire à projection nulle
sur le plan horizontal 0 x R2 et à projection négative sur l'axe vertical
R x 0.
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Définition. Une telle variété L sera appelée semi-tresse à n brins. Deux
semi-tresses à n brins seront dites isotopes s'il existe une isotopie de la bande

[0, 1] x R2 fixe sur le bord qui envoie l'une sur l'autre.
Soient L et L' deux semi-tresses à n brins. En recollant les deux bandes

l'une au-dessus de l'autre (celle contenant L étant au-dessus), on obtient une
nouvelle semi-tresse. Cette semi-tresse sera appelée produit de L par L' et

notée LL'.

Proposition 6-1. L'ensemble des classes d'isotopie de semi-tresses à

n brins est un monoïde unitaire pour le produit. Ce monoïde contient le

groupe des tresses Bn comme sous-monoïde. Il sera noté Bn.

Remarque. Contrairement au groupe Bn, le monoïde Bn est très gros,
même pour n petit. Ainsi B0 est isomorphe au monoïde des classes d'isotopie
d'entrelacs orientés, la loi de composition étant la somme disjointe.

Théorème 6-2. Il existe pour tout n > 0 une unique représentation p

du monoïde Bn dans l'algèbre de Hecke Hn (g) A, possédant les propriétés

— p étend la représentation canonique de Bn dans Hn,

— si L+, L_ et L0 sont trois semi-tresses à n brins obtenues à

partir d'une semi-tresse par modifications au voisinage d'un croisement (avec

les mêmes notations que dans le cas des entrelacs), on a

Exemple de semi-tresse à 2 brins :

Comme précédemment, on posera

A /c[c]/1 + ß_ac Z[a, ß, ß 1, c]/1 + ß

k

suivantes :

p(L+) + ßp(L_) - ap(Lo) 0.
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Démonstration. Elle occupera tout le reste du paragraphe.

i) Construction de p.

Soit K le corps de fraction de A. Soit s l'application canonique de Hn

dans A, composée de la trace de Hn dans A et de l'application quotient

de A dans A qui envoie chaque classe ct en c.

Lemme 6-3. L'application qui à u et v de Hn associe s(uv) induit une

forme bilinéaire symétrique non dégénérée sur le K-espace vectoriel Hn ® K.

Démonstration. Posons, pour tout u et v de Hn,<u,v> l'élément

s(uv) de A. Il est clair que le produit scalaire < > est symétrique. Si

l'on quotiente k, A, Hn et A par les relations

a 0 ß — 1

k devient Z, A devient l'anneau Z[cl9 c2,...]> A devient Z[c] et Hn devient

Z[0J. Si a est une permutation de sa classe dans A est le monôme

cf cp22..., où pi représente le nombre d'orbites de a à i éléments. En effet,

si a est un cycle d'ordre n9 il est conjugué à la permutation a1a2 a„_x
et sa classe dans A est cn. Si a est formé de cycles d'ordres qi9 a est

conjugué à une permutation t1t2 où les xf sont des cycles d'ordres qt
et sa classe est le produit des classes cq..

Il en résulte que la classe de a dans Z[c] est égale à cm, m étant le

nombre d'orbites de a. Et le produit scalaire < cr, x > de deux permutations
de est égal à cm, m étant le nombre d'orbites de cru. Soit À le
déterminant de ce produit scalaire calculé dans la base de Z[SJ. On a

a z [/] n cm{°n°)]
>

/ CT

le produit portant sur toutes les permutations de et la somme sur toutes
les bijections de dans lui-même. Le symbole [/] désigne la signature de /
et m(x) désigne le nombre d'orbites de x.

Comme m(x) est majoré par n, quelle que soit la permutation x, le degré
de A est majoré par nn D'autre part, le coefficient de c' dans A est
la somme des nombres [/], / parcourant l'ensemble des bijections de
dans lui-même telles que cr/(c>) ait n orbites quel que soit a, c'est-à-dire
telles que a/(a) soit l'identité quel que soit a. Cet ensemble de bijections
est donc réduit à un élément et le coefficient de cnn- dans A est non nul.
Il en résulte que A est non nul. Or A est la classe du déterminant de
la forme bilinéaire symétrique < > dans le quotient Z[c] de A. On
en déduit que le produit scalaire < > est non dégénéré dans K.
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Soit L une semi-tresse à n brins. Pour toute tresse a de Bn on peut
refermer la semi-tresse La et l'on obtient un entrelacs orienté Ea. On
notera L(a) le polynôme de Jones-Conway de Ea.

Lemme 6-4. L'application F s'étend en une application linéaire, toujours
notée F, de l'algèbre Hn dans l'anneau A.

Démonstration. On étend linéairement F à l'algèbre de groupe &[£„].
Soient a et x deux tresses et i < n un entier. D'après les propriétés du
polynôme de Jones-Conway, on a

L(aafx) — aL(aa;x) + ßL(ax) 0

et F se factorise à travers l'algèbre Hn.

Comme le produit scalaire < > est non dégénéré sur K, il existe un
unique élément U de l'algèbre Hn ® K tel que

Vu g Hn, cF(u) <U,u>
et U ne dépend que de la classe d'isotopie de la semi-tresse L; U sera
noté p(L).

ii) Propriétés de p.

Lemme 6-5. Si L est une tresse x, p(x) est égal à la classe de x

dans Hn.

Démonstration. Soit a une tresse. En refermant la tresse xa on obtient
l'entrelacs Ea. On en déduit que la classe e(xa) dans A est égale à cPEa et

l'on a

cL(a) <x, a>

Comme ceci a lieu pour toute tresse a et donc pour tout élément de

Hn, p(x) est égal à la classe de x dans Hn.

Lemme 6-6. Si L est une semi-tresse à n brins et a une tresse de

Bn, on a

p(La) p(L)p(a).

Démonstration. Soit x une tresse de Bn. Le produit scalaire < p(La), x >
est égal au produit de c par le polynôme de Jones-Conway de l'entrelacs

obtenu en fermant Lax. Il en résulte que < p(La), x > est égal à < p(L), ax >
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c'est-à-dire à <p(L)a, t>. Comme ceci a lieu pour toute tresse x, p(Lcr)

est égal à p(L)p(<r).

Lemme 6-7. Soient L+, L_ et L0 trois semi-tresses obtenues par

modification d'une semi-tresse près d'un croisement. Le croisement étant de signe

positif pour L+ et négatif pour L_ et ayant disparu dans L0. Alors on a

p(^+) + ßp(L_) — ocp(L0) 0

Démonstration. Soit a une tresse. Alors les trois entrelacs obtenus en

fermant L+g, L_a et L0a sont obtenus d'un entrelacs par modifications au

voisinage d'un croisement. D'après les propriétés du polynôme de Jones-

Conway, on a

<p(L+), cr> + ß<p(L_), a> — a<p(L0), a> 0

et l'on en déduit la formule cherchée.

iii) Unicité de p.

Soit L une semi-tresse représentée par une projection régulière sur une
bande [0, 1] x R du plan. Notons Cx, C2,Cn les composantes connexes
de L qui partent de la partie supérieure de la bande en les numérotant
de façon que les points supérieurs des composantes soient placés de la gauche

vers la droite. On notera E l'entrelacs formé des composantes fermées de L.
On dira que L est ascendante si E est en dessous de chaque Q et si,

en parcourant Cx puis C2 et ainsi de suite jusqu'à C„, chaque fois que
l'on croise une portion de courbe déjà vue, on la croise par dessus. Il
est clair que si L est ascendante, l'union des Q est dénouée et L est

isotope à la somme disjointe d'une tresse et d'un entrelacs. Si L est une
semi-tresse il suffit de modifier les positions dessus-dessous de certains
croisements et l'on obtient une semi-tresse ascendante.

Lemme 6-8. Pour toute semi-tresse L à n brins, p(L) appartient à

Hn (g) A.

Lemme 6-9. Soit p' une application de Bn dans Hn (g) A qui
vérifie les propriétés du théorème 6-1. Alors pour toute semi-tresse L, p'(L)
est égal à p(L).

Lemme 6-10. Soient L et L' deux semi-tresses à n brins. Alors on a

p(LU) - p(L)p(L')
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Démonstrations. Ces lemmes vont être démontrés par récurrence sur le

nombre de croisements de L. Supposons donc que les lemmes sont vérifiés

pour toute semi-tresse ayant au plus m — 1 croisements. Soit L une semi-

tresse ayant m croisements. Si l'on modifie un croisement de L (par modification

dessus-dessous) on obtient une nouvelle semi-tresse Lx. Soit L0 la
semi-tresse obtenue en supprimant le croisement. D'après le lemme 6-7, on a

p(L) + ßp(Li) ap(L0) ou ßp(L) + p(Lx) ap(L0)

suivant le signe du croisement considéré. Comme L0 a m — 1 croisements,

p(L0) appartient à Hn® A, p'(L0) est égal à p(L0) et p(L0L') est égal à

p(L0)p(L/). On en déduit que p(L) appartient à Hn ® A si et seulement si

p(LJ appartient à Hn ® A, que p' et p sont égaux en L si et seulement si

ils sont égaux en Ll et que p(LL') est égal à p(L)p(L/) si et seulement si

p(LXL') est égal à p(L1)p(L').
Pour montrer les propriétés cherchées on peut supposer, quitte à modifier

les croisements non ascendants de L, que L est ascendant. La semi-tresse L
est alors isotope à l'union disjointe d'une tresse t et d'un entrelacs E.

Soit <j une tresse. L'entrelacs obtenu en fermant La est l'union disjointe
de E et de l'entrelacs obtenu en fermant t. On a donc

< p(L), a > < x, a > cPE

ce qui implique que p(L) est égal à p(t)cPe et par suite appartient à

Hn® A.

D'autre part, pour tout entrelacs orienté E\ on peut considérer l'image par
p' de l'union disjointe de x et de E'. On construit ainsi un invariant

polynomial d'entrelacs qui vérifie les propriétés du polynôme de Jones-

Conway, sauf la propriété de valoir 1 sur l'entrelacs trivial. D'après l'unicité
du polynôme de Jones-Conway, on a

p'(x{jE') p(x

Comme il en est de même pour p, p et p' prennent la même valeur en L.

Enfin, on remarque que LL' est isotope à l'union disjointe de s et de

xL'. On a donc pour toute tresse a

< p(LL'), a > < p(L'), ax > cPE

ce qui implique

p (LL') p(t)p
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Comme ceci a lieu quel que soit L', on a

p(L) p(t)cPe

et l'on a

p(LL') p(L)p(L').

Les lemmes sont alors démontrés, ce qui prouve que p est une représentation

de Bn dans Hn ® A qui prolonge la représentation canonique de Bn

dans Hni qu'elle vérifie la formule voulue sur les semi-tresses L+, L_ et L0,
et que c'est la seule représentation vérifiant ces propriétés.

BIBLIOGRAPHIE

[1] Alexander, J. W. A lemma on a system of knotted curves. Proc. Nat. Acad.
Sei. USA 9 (1923), 93-95.

[2] A matrix knot invariant. Proc. Nat. Acad. Sei. USA 19 (1933), 212-215.

[3] Birman, J. S. Braids, links and mapping class group. Annals of Math. Studies n° 82.

Princeton Univ. Press. Princeton, N.J. (1976).
[4] Birman, J. S. and H. Wenzl. Braids, links, polynomials and a new algebra.

Preprint 1986.

[5] Brandt, R. D., W. B. R. Lickorish and K. C. Millett. A polynomial invariant
for unoriented knots and links. Invent. Math. 84 (1986), 563-573.

[6] Freyd, P., D. Yetter, J. Hoste, W. B. R. Lickorish, K. C. Millett and
A. Ocneanu. A new polynomial invariant of knots and links. Bull. AMS 12

(1985), 239-246.

[7] de la Harpe, P., M. Kervaire and C. Weber. On the Jones polynomial.
LEns. Math. 32 (1986), 271-335.

[8] Hoste, J. A new polynomial for knots and links. Pac. J. of Math. 124 (1986),
295-320.

[9] Jones, V. F. R. A polynomial invariant for knots via von Neumann algebras.
Bulletin AMS 12 (1985), 103-111.

[10] A new knot polynomial and von Neumann algebras. Notices AMS 33
(1986), 219-225.

[11] Hecke algebra representations of braid groups and link polynomials.
Annals of Math. 126 (1987), 389-414.

[12] Kauffman, L. State models and the Jones polynomial. Topology 26 (1987),
395-407.

[13] An invariant of regular isotopy. Preprint.


	§6. Une généralisation du polynôme de Jones-Conway

